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Abstract

This paper presents a comprehensive benchmarking suite tailored to offline safe reinforce-
ment learning (RL) challenges, aiming to foster progress in the development and evaluation
of safe learning algorithms in both the training and deployment phases. Our benchmark
suite contains three packages: 1) expertly crafted safe policies, 2) D4RL-styled datasets
along with environment wrappers, and 3) high-quality offline safe RL baseline implementa-
tions. We feature a methodical data collection pipeline powered by advanced safe RL algo-
rithms, which facilitates the generation of diverse datasets across 38 popular safe RL tasks,
from robot control to autonomous driving. We further introduce an array of data post-
processing filters, capable of modifying each dataset’s diversity, thereby simulating various
data collection conditions. Additionally, we provide elegant and extensible implementa-
tions of prevalent offline safe RL algorithms to accelerate research in this area. Through
extensive experiments with over 50000 CPU and 800 GPU hours of computations, we eval-
uate and compare the performance of these baseline algorithms on the collected datasets,
offering insights into their strengths, limitations, and potential areas of improvement. Our
benchmarking framework serves as a valuable resource for researchers and practitioners,
facilitating the development of more robust and reliable offline safe RL solutions in safety-
critical applications. The benchmark website is available at www.offline-saferl.org.
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1 Introduction

Reinforcement learning (RL) has shown remarkable success in a broad array of domains,
from game playing to robot control (Mnih et al., 2015; Ibarz et al., 2021). Nevertheless,
a paramount challenge persists: guaranteeing safety throughout both the training and de-
ployment phases (Gu et al., 2022). This is of particular concern in applications where unsafe
behaviors could lead to catastrophic outcomes (Xu et al., 2022b). Traditional online RL
often struggles to optimally balance safety performance and task performance, frequently
leading to policies that are either excessively risky or unduly conservative. This is because
of the difficulty in integrating cost and reward signals into a singular objective function
without sidelining either aspect. Unlike traditional methods that rely on fixed coefficients
for cost terms, safe RL dynamically adjusts these coefficients in response to the policy’s
current risk profile (Chen et al., 2021a; Yao et al., 2023; Liu et al., 2023a), offering a more
adaptable solution to enforce safety constraints. However, the requisite online interactions
for this dynamic adjustment pose significant risks during the training phase, particularly
in safety-critical applications like autonomous driving, where the exploration of unknown
actions on real roads is unfeasible (Lin et al., 2023).

Given these considerations, offline safe learning emerges as a pivotal research area,
focusing on the development of constrained policies from pre-collected datasets that ensure
safety throughout the learning process (Levine et al., 2020). These approaches sidestep
the dangers associated with online exploration, thereby enhancing the practicality of RL
applications in safety-sensitive environments.

Figure 1: Overview of the benchmark with three packages: FSRL, DSRL, and OSRL.

Despite the rising significance of offline learning, public benchmarks or datasets specifi-
cally designed to address the safety aspect are notably scarce. Conventional datasets, like
D4RL (Fu et al., 2020), are excellent proving grounds for traditional offline learning al-
gorithms, but their primary objective is reward maximization without any explicit safety
constraints (Seno and Imai, 2022). This notable gap impedes the progress of deploying RL
safely to real-world applications. There is a clear need for a specialized benchmark and
dataset to train, evaluate, and compare safe learning algorithms under constraints.
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To address this gap, we introduce a comprehensive benchmarking platform and datasets
for offline safe learning, comprised of three packages: FSRL (Fast Safe RL), DSRL (Datasets
for Safe RL), and OSRL (Offline Safe RL) as shown in Figure 1. FSRL incorporates an efficient
data collection pipeline with parallel workers from Tianshou (Weng et al., 2021) to gener-
ate datasets suitable for safety-embedded tasks. We provide 38 high-quality datasets across
different difficulty levels in three widely-used safe RL environments: Mujoco-based Safety-
Gymnasium (Ray et al., 2019; Ji et al., 2023b), PyBullet-based BulletSafetyGym (Gronauer,
2022), and Panda3D-based self-driving simulator MetaDrive (Li et al., 2022).

DSRL hosts these offline datasets, offering a consistent API with D4RL, which is com-
monly used in offline RL, for easy usage and online evaluation of offline learning methods (Fu
et al., 2020). We also furnish an array of deterministic data post-processing filters that can
alter data density, noise level, as well as the distributions of rewards and costs, simulating
diverse data collection conditions. This produces hundreds of distinct datasets of vary-
ing difficulty levels. Importantly, our framework doesn’t only supply pre-collected datasets
but also establishes a systematic approach to data collection and processing, enabling easy
extension to other domains for future datasets and fostering a continually evolving bench-
marking ecosystem.

Furthermore, we offer the OSRL codebase, implementing a broad spectrum of existing
offline safe RL algorithms (Xu et al., 2022a; Lee et al., 2022; Liu et al., 2023b) for offline
learning and their corresponding online evaluation scripts. This serves as a solid foundation
for the safe RL community to build upon and benchmark against. To provide insights into
their strengths and limitations, we conduct an extensive empirical analysis of these baseline
algorithms using our benchmark datasets.

In summary, our contributions are as follows:

• We introduce a comprehensive benchmarking platform tailored for offline
safe learning, providing a standard testing ground for the evaluation and comparison
of safe learning algorithms.

• We offer a collection of post-processing filters to simulate diverse data
collection conditions, yielding distinct datasets with varying difficulty levels.

• We implement the D4RL-style data wrapper and state-of-the-art offline
safe learning algorithms, serving as a good starting point for researchers and prac-
titioners in this area.

• We conduct a thorough empirical analysis, utilizing over 50,000 CPU hours
and 800 GPU hours of computation, providing us insights into the strengths and
limitations of offline safe RL algorithms.

By making our datasets and codebase publicly available, we aim to foster collaboration,
accelerate innovation, and contribute to the broader adoption of safe RL solutions in safety-
critical applications.

2 Related Work

Safe RL and Benchmarks. Ensuring safety during RL training and deployment is a
challenging problem (Gu et al., 2022; Xu et al., 2022b). Numerous techniques have been
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explored to incorporate safety constraints into RL, such as constrained optimization (Sootla
et al., 2022; Yang et al., 2021; Liu et al., 2022a), Lagrangian-based methods (Chow et al.,
2017; Chen et al., 2021c), and correction-based approaches (Zhao et al., 2021; Luo and Ma,
2021). Despite these efforts, guaranteeing zero constraint violations during training is a
formidable task (Dalal et al., 2018; Brunke et al., 2021). While there are benchmarks avail-
able for safe RL algorithms (Ray et al., 2019; Ji et al., 2023b) and environments (Gronauer,
2022; Ji et al., 2023a), the lack of a comprehensive suite that targets offline training remains
a gap in the field.

Offline RL and Benchmarks. Offline RL techniques aim to learn effective policies
from pre-collected data without further environment interactions (Ernst et al., 2005; Levine
et al., 2020). It promises to enhance the scalability and efficiency of RL, particularly in
applications where real-time interaction is expensive, risky, or impractical (Fu et al., 2019;
Brandfonbrener et al., 2021). Offline RL is characterized by unique challenges, primarily
arising from distributional shift, which can lead to extrapolation errors when learning poli-
cies beyond the support of the data distribution (Fujimoto et al., 2019; Kumar et al., 2020).
To combat these challenges, several strategies have been proposed, such as incorporating
regularization or constraints (Wu et al., 2019; Peng et al., 2019; Kostrikov et al., 2021),
or leveraging techniques like importance sampling to reduce estimation variance (Nachum
et al., 2019). While there are prevalent testing grounds for offline RL algorithms (Fu et al.,
2020; Gulcehre et al., 2020; Tarasov et al., 2022); however, they lack explicit safety con-
straints in their datasets.

Offline Safe RL. The intersection of offline RL and safe RL has recently been a fo-
cus of attention, where techniques from both fields are leveraged (Le et al., 2019). For
instance, stationary distribution correction-based methods have been used to formulate the
constrained optimization problem (Lee et al., 2022; Polosky et al., 2022), while Lagrangian-
based approaches have been integrated with offline RL methods to provide safe learning (Xu
et al., 2022a). Sequential decision-making algorithms such as Decision Transformers have
also been explored in this area (Liu et al., 2023b; Zhang et al., 2023). Despite these devel-
opments, there are no publicly safe RL datasets and algorithm libraries to compare these
methods, revealing a clear need for a benchmarking framework in this vital area.

3 Preliminaries

3.1 Constrained Markov Decision Process and Safe RL

Safe RL is usually formulated under the Constrained Markov Decision Process (CMDP)
framework (Altman, 1998). A finite horizon CMDP, denoted as M, consists of a tuple
(S,A,P, r, c, µ0), where S represents the state space, A the action space, P : S ×A×S →
[0, 1] the transition function, r : S × A × S → R the reward function, and µ0 : S → [0, 1]
the initial state distribution. In addition to these elements in a typical MDP, CMDP
incorporates an extra cost function c : S × A × S → [0, Cmax] to account for constraint
violations, with Cmax being the maximum cost.

A safe RL problem is specified by a CMDP and a constraint threshold κ. A pol-
icy π : S × A → [0, 1] maps the state-action space to probabilities, and a trajectory
τ = {s1, a1, r1, c1..., sT , aT , rT , cT } contains state and action, reward, and cost informa-
tion throughout the maximum episode length T . The cumulative reward and cost for a
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trajectory τ are represented as R(τ) =
∑T

t=1 rt and C(τ) =
∑T

t=1 ct, respectively. Safe RL
aims to find a policy that maximizes the reward while keeping the constraint violation cost
below the threshold κ:

max
π

Eτ∼π

[
R(τ)], s.t. Eτ∼π

[
C(τ)] ≤ κ. (1)

The majority of literature focuses on the online setting (Achiam et al., 2017; Zhang et al.,
2020; Liu et al., 2022b), where the agent is allowed to interact with the environment to
gather fresh trajectory data. Conversely, in the offline setting, the agent must rely on
pre-collected trajectories from unknown policies, which poses challenges for solving this
constrained optimization problem.

3.2 Characterizing Dataset with Constraints

The cost-reward plot is a commonly used tool in safe reinforcement learning (RL), used
to visualize the diversity of offline datasets by plotting the total reward and cost of each
trajectory (Liu et al., 2023b). This scatter plot reveals the dataset’s diversity and the trade-
offs between maximizing rewards and satisfying constraints. The spread and shape of points
on the plot indicate dataset complexity and the inherent challenge of balancing high-reward
opportunities against their risks (Liu et al., 2022b). We aim to enhance trajectory diversity
by covering the cost-reward metric space extensively. While trajectories may share similar
cost and reward outcomes, differing cost-reward returns ensure each trajectory’s uniqueness.
Our goal is to populate the metric space with diverse trajectories to enable the resolution of
target problems within the dataset’s scope. Although not all discarded trajectories might
be redundant, our selection process ensures the inclusion of diverse trajectories that are
sufficient for solving target problems. Therefore, the cost-reward plot serves as an intuitive
tool for understanding the dataset’s property, complexity, and diversity. This, in turn, aids
in selecting appropriate datasets for benchmarking offline safe RL algorithms.

Figure 2: Illustration of the cost-reward plot and data collection from a mixture of experts.
Multiple expert policies are trained, the raw data is collected, and a density filter
is applied to remove redundant trajectories concentrated within the same region.

4 Datasets and Benchmarks

4.1 Dataset Collection

Our objective is to collect an array of high-quality datasets that span a spectrum of difficulty
levels, thus enabling an unbiased evaluation of various algorithms’ capabilities. With this
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goal, we implement the FSRL library, containing advanced safe RL algorithms to generate a
broad spectrum of datasets. The supported algorithms include the PID Lagrangian-based
methods (Ray et al., 2019; Stooke et al., 2020), first-order method (Zhang et al., 2020),
second-order method (Achiam et al., 2017), and variational-inference-based method (Liu
et al., 2022a). Each task is trained by a suite of expert policies subjected to varying cost
thresholds, thereby obtaining a pool of raw data that captures the intricacies of different
task scenarios. Subsequently, we apply a density filter across the cost-reward return space.
This filter removes redundant trajectories that are highly concentrated within the same
region, thereby maintaining greater diversity within the dataset. The full procedure is
visualized in Figure 2. More details regarding the implemented expert algorithms, training
techniques, and hyperparameters are available in the supplementary material. Through this
methodical approach to data collection, we strive to provide a rich and varied foundation
for assessing the strengths and limitations of offline safe RL algorithms under a broad range
of conditions.

Figure 3: Visualization of the simulation environments and representative tasks.

Simulation Environments and Tasks. We gather datasets from three widely recog-
nized safe RL environments: 1) SafetyGymnasium (Ray et al., 2019; Ji et al., 2023b),
a collection of environments based on the Mujoco physics simulator, which offers a diverse
range of tasks, with various safety constraints and challenges that can be adjusted to create
different difficulty levels. 2) BulletSafetyGym (Gronauer, 2022), a suite of environments
built on top of the PyBullet physics simulator, which is similar to SafetyGymnasium but
with shorter horizons and more agents. 3) MetaDrive (Li et al., 2022), a self-driving simu-
lator based on the Panda3D game engine (Goslin and Mine, 2004), which provides intricate
road conditions and dynamic scenarios that closely emulate real-world driving situations,
enabling the evaluation of safe RL algorithms in high-stakes, realistic applications. Figure
3 visualize some representative tasks of these environments. For example, the Safety-
Gymnasium constrains navigation tasks, such as reaching goals while avoiding obstacles,
and locomotion tasks, such as controlling an agent to move forward within a velocity limit.
More details of the environments can be found in Appendix A.

An overview of these environments and tasks is presented in Table 1. We totally collect
over 75000 diverse trajectories from 38 tasks. A detailed breakdown of these datasets,
including task names, trajectory size, observation space, and action space, can be found
in the supplementary material. By gathering datasets from these distinct environments,
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Benchmarks Backends Environments Agents
Difficulty

Levels

Total

Tasks

Dataset

Trajectories

SafetyGymnasium Mujoco

Goal, Button,

Push, Circle
Point, Car 2 16 40310

Velocity
Ant, HalfCheetah, Hopper,

Swimmer, Walker2d
1 5 11399

BulletSafetyGym PyBullet Run, Circle Ball, Car, Drone, Ant 1 8 14498

MetaDrive Panda3D Driving Vehicle 3 9 9000

Table 1: Overview of the safe RL benchmarks and tasks for dataset collection

we ensure a well-rounded evaluation and benchmarking process that accurately reflects the
capabilities of offline safe RL algorithms across a wide spectrum of tasks and complexities.

4.2 Dataset Wrapper and Post-process Filters

We provide and maintain all the collected datasets via the DSRL package, which follows
the same user-friendly API structure as D4RL (Fu et al., 2020), facilitating the usage for
researchers. The key distinction lies in the inclusion of a specialized costs entry in the
datasets for indicating constraint violations.

Apart from the access to the full datasets that are diverse over the cost-reward return
space, we also provide a set of post-process filters to adjust the complexity and difficulty level
of each dataset, aiming to achieve a comprehensive evaluation for different perspectives, as
we will introduce in section 4.3. This idea is similar to the data augmentation technique in
improving the performance and robustness of models (Miko lajczyk and Grochowski, 2018;
Dao et al., 2019; Maharana et al., 2022) This involves changing data density, discarding data
within specific cost-reward ranges, and increasing outlier trajectories. Here is a detailed
description of these filters:

Figure 4: Illustration of the post-process filters.

Filter for Data Density Vari-
ation: This filter aims to create
datasets with varying data densities.
These variations will help evaluate
the algorithms’ ability to perform un-
der different levels of data availability
and assess their generalization capa-
bilities.

Filter for Partial Data Dis-
carding: This filter operates by se-
lectively removing trajectories within
defined return ranges, represented
as [(rmin, cmin), (rmax, cmax)]. Typi-
cally, by discarding trajectories with
low costs and high rewards, we al-
ter the reward distribution, mirror-
ing scenarios where data is collected
by either overly conservative or ex-
cessively risky policies. Another us-
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age scenario is removing data within specific cost ranges, which can assess an algorithm’s
ability to manage unseen safety thresholds and learn from sub-optimal data.

Filter for Noise Level Manipulation: The real-world dataset could be noisy and
contains trajectories that accidentally record high reward returns and small cost returns
despite following a poor behavioral policy. We consider the task with stochastic reward
and cost function, i.e., high-cost trajectories have the probability of α% to be labeled as
a “lucky” trajectory with high reward and low cost. The noise level manipulation filter
introduces different degrees of outliers to the dataset trajectories Specifically, we select α%
high-cost trajectories and modify their cost return to be less than the cost threshold and
their reward returns to be high. This process simulates outlier trajectories that could poten-
tially mislead learning algorithms by promoting hazardous behaviors, mimicking scenarios
where abnormality arises during data collection. With this filter in place, we assess the
algorithm’s capacity to manage noisy data and its tolerance towards outliers.

These filters function deterministically, ensuring the resulting datasets remain consis-
tent given a fixed parameter, thereby maintaining fair comparison between algorithms. In
addition, they offer compositional flexibility when applied to the entire dataset, permitting
customization of learning problem difficulty levels. As a result, our benchmark offers hun-
dreds of unique datasets, each embodying different challenge levels, allowing us to efficiently
evaluate various aspects of safe learning algorithms across a diverse range of complexity, as
we will introduce in the next section. We also present examples of using these filters in the
experiments and supplementary material.

4.3 Evaluating Offline Safe RL Algorithms

Given the distinctive problem setting, objectives, and applications of offline safe RL com-
pared to standard RL, we reevaluate the methodology for comparing offline safe RL ap-
proaches. Accordingly, we propose a tiered, four-level evaluation perspective, organized in
order of importance, to assess safe offline reinforcement learning algorithms more accurately.

Safety Compliance: This primary requirement evaluates an agent’s adherence to
specific safety rules. The learning agent must not violate any safety constraints while
striving to maximize rewards.

Reward-seeking: Alongside safety, we assess the agent’s ability to maximize rewards
within the safety set. We want to prevent the agent from being overly conservative and
achieve a balance between safety and reward-seeking behavior.

While these initial levels focus on fundamental requirements, the remaining levels target
more advanced attributes that add value to offline safe RL algorithms.

Generalization: A generalizable safe learning algorithm should be capable of learning
from sub-optimal data and be robust to unseen samples upon deployment, as obtaining
datasets that comprehensively cover every possible scenario is impractical. This perspective
measures the agent’s adaptability to previously unseen training conditions and requirements.

Outlier Sensitivity: This attribute tests the algorithm’s resilience against outliers in
the datasets. The algorithm’s performance against outlier trajectories with abnormally high
rewards and low costs is assessed, ensuring it can effectively handle noisy or imperfect data
without compromising safety.
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We present these evaluation perspectives as a guiding resource for future researchers and
practitioners. While our benchmark primarily centers on the first two levels of evaluation,
we supply an array of filters to post-process the datasets. These filters aid in assessing the
generalization capabilities and outlier sensitivity of learning algorithms, as we presented in
the previous section.

4.4 Offline Safe RL Benchmarks

We implemented a broad range of existing offline safe RL methods in our benchmark,
all organized under the OSRL package, whose framework design is mainly inspired by the
user-friendly CORL (Tarasov et al., 2022) library. A detailed summary of these methods is
provided in Table 2. The Type row categorizes the learning algorithm (such as Q-learning or
imitation learning), while the Base Method row indicates the corresponding offline learning
method, excluding safety constraints considerations. As far as we know, these implemented
algorithms represent the majority of the offline safe learning categories currently available
in the literature.

It’s worth highlighting that the Lagrangian-based methods align with the expert safe RL
policy implementation in our FSRL package, which utilizes adaptive PID-based Lagrangian
multipliers to penalize constraint violations (Stooke et al., 2020). This approach can be ef-
fortlessly extended to other existing Q-learning-based offline RL methods. In addition, we’ve
prioritized coherence and user-friendliness in the API structure of these implementations,
aiming to provide a valuable resource that can contribute to and further the development
of the offline safe RL community.

Type Sequential Modeling Imitation Learning
Distribution Correction

Estimation
Q-learning

Algorithm
CDT

(Liu et al., 2023b)

BC-{Safe, All}
(Liu et al., 2023b; Xu et al., 2022a)

COptiDICE

(Lee et al., 2022)

CPQ

(Xu et al., 2022a)

BCQ-Lag

(Xu et al., 2022a)

BEAR-Lag

(Xu et al., 2022a)

Base Method

Decision

Transformer

(Chen et al., 2021b)

Behavior Cloning
OptiDICE

(Lee et al., 2021)

BCQ

(Fujimoto et al., 2019)

BCQ

(Fujimoto et al., 2019)

Lagrangian

(Stooke et al., 2020)

BEAR

(Kumar et al., 2019)

Lagrangian

(Stooke et al., 2020)

Table 2: Implemented offline safe learning algorithms and their base methods.

4.5 Evaluation Metrics

We adopt the normalized reward return and the normalized cost return as the comparison
metrics (Fu et al., 2020; Liu et al., 2023b). Denote rmax(M) and rmin(M) as the maxi-
mum empirical reward return and the minimum empirical reward return for task M. The
normalized reward is computed by:

Rnormalized =
Rπ − rmin(M)

rmax(M) − rmin(M)
,

where Rπ denotes the evaluated reward return of policy π. Note that we use a constant
maximum and minimum values for a safe RL task rather than a dataset. This is because
the post-process filters may modify the dataset to create different difficulty levels.

The normalized cost is defined differently from the reward to better distinguish the
results. It is computed by the ratio between the evaluated cost return Cπ and the target
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threshold κ:

Cnormalized =
Cπ + ϵ

κ + ϵ
,

where ϵ is a positive number to ensure numerical stability if the threshold κ = 0 and
ϵ = 0 if κ ̸= 0. Note that the cost return and the threshold are always non-negative.
Without otherwise statements, we will abbreviate “normalized cost return” as “cost” and
“normalized reward return” as “reward” for simplicity.

5 Experiments and Analysis

5.1 Experiment Settings

Contrary to earlier safe RL studies, which tested agents under a single threshold, we adopt
a Constraint Variation Evaluation to assess algorithm versatility. By training agents
with varying safety constraint requirements, we can evaluate an algorithm’s adaptability to a
diverse range of safety conditions. This is similar to the Average Precision or the Area Under
the Curve metrics in the literature (Davis and Goadrich, 2006). Note that the algorithms
implemented (except CDT) need re-training from scratch for different cost thresholds which
is impractical since it requires training thousands of policies. Empirically, each algorithm is
trained and evaluated on each dataset using three distinct target cost thresholds and with
three random seeds. These target cost thresholds range from low to high, with the lower
thresholds posing a challenge for training due to limited safe trajectories and an abundance
of tempting but risky ones, and the higher thresholds presenting the opposite scenario. We
then compute the average of the normalized reward and cost to characterize the performance
on varying safety conditions better.

Hyperparameter Tuning Procedure: We employ a three-step process to tune the
hyperparameters. Note that we perform online evaluations to determine the performance
metrics, aiming to test the maximum capabilities of these algorithms without bias. It is
important to acknowledge that the best practice for hyperparameter tuning in offline RL
without environment interaction remains an active area of research and falls outside the
scope of this paper.

1. Baseline Optimization: We begin by initializing the hyperparameters with those
used in Tianshou, setting the cost limit to infinity. We then fine-tune common hy-
perparameters such as learning rate, batch size, and hidden layer sizes to ensure the
agent can complete the task without safety constraints. With minimal adjustments
to Tianshou’s default values, most base algorithms successfully solve the task after a
few trials.

2. Safety Constraint Integration: Next, we introduce a cost threshold of 40 and
focus on tuning safety-related parameters, such as the safety penalty coefficient for
Lagrangian-based approaches. We conduct a grid search for these key hyperparame-
ters, selecting the combination that yields the best overall performance.

3. Algorithm-Specific Optimization: Finally, we perform a grid search for algorithm-
dependent hyperparameters. For instance, in the case of CDT (Constrained Decision
Transformer), we optimize the number of attention heads.
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Detailed hyperparameter configurations are provided in Appendix A.4.

Except for the experiments for CDT, which are conducted with NVIDIA A100 GPUs,
all other experiments are conducted with AMD EPYC 7542 32-Core CPUs or Intel Xeon
CPUs with 4 threads. The longest experiment takes approximately one day.

BC-All BC-Safe CDT BCQ-Lag BEAR-Lag CPQ COptiDICE
Task

reward ↑ cost ↓ reward ↑ cost ↓ reward ↑ cost ↓ reward ↑ cost ↓ reward ↑ cost ↓ reward ↑ cost ↓ reward ↑ cost ↓
PointButton1 0.1±0.06 1.05±0.39 0.06±0.04 0.52±0.21 0.53±0.01 1.68±0.13 0.24±0.04 1.73±1.11 0.2±0.04 1.6±0.99 0.69±0.05 3.2±1.57 0.13±0.02 1.35±0.91

PointButton2 0.27±0.08 2.02±0.38 0.16±0.04 1.1±0.84 0.46±0.01 1.57±0.1 0.4±0.03 2.66±1.47 0.43±0.05 2.47±1.17 0.58±0.07 4.3±2.35 0.15±0.03 1.51±0.96

PointCircle1 0.79±0.05 3.98±0.55 0.41±0.08 0.16±0.11 0.59±0.0 0.69±0.04 0.54±0.17 2.38±1.3 0.73±0.11 3.28±2.07 0.43±0.07 0.75±1.86 0.86±0.01 5.51±2.93

PointCircle2 0.66±0.09 4.17±0.72 0.48±0.08 0.99±0.35 0.64±0.01 1.05±0.08 0.66±0.13 2.6±0.71 0.63±0.27 4.27±1.48 0.24±0.4 3.58±3.09 0.85±0.01 8.61±4.62

PointGoal1 0.65±0.03 0.95±0.07 0.43±0.12 0.54±0.24 0.69±0.02 1.12±0.07 0.71±0.02 0.98±0.46 0.74±0.02 1.18±0.64 0.57±0.08 0.35±0.37 0.49±0.05 1.66±1.05

PointGoal2 0.54±0.03 1.97±0.24 0.29±0.09 0.78±0.27 0.59±0.03 1.34±0.05 0.67±0.06 3.18±1.79 0.67±0.03 3.11±1.76 0.4±0.15 1.31±0.71 0.38±0.03 1.92±1.15

PointPush1 0.19±0.07 0.61±0.05 0.13±0.05 0.43±0.29 0.24±0.02 0.48±0.05 0.33±0.04 0.86±0.45 0.22±0.04 0.79±0.39 0.2±0.08 0.83±0.44 0.13±0.02 0.83±0.52

PointPush2 0.18±0.02 0.91±0.1 0.11±0.04 0.8±0.59 0.21±0.04 0.65±0.03 0.23±0.03 0.99±0.57 0.16±0.05 0.89±0.59 0.11±0.14 1.04±0.61 0.02±0.07 1.18±0.74

CarButton1 0.03±0.1 1.38±0.41 0.07±0.03 0.85±0.39 0.21±0.02 1.6±0.12 0.04±0.05 1.63±0.59 0.18±0.05 2.72±2.23 0.42±0.05 9.66±5.71 -0.08±0.09 1.68±1.29

CarButton2 -0.13±0.01 1.24±0.26 -0.01±0.02 0.63±0.3 0.13±0.01 1.58±0.02 0.06±0.05 2.13±1.19 -0.01±0.09 2.29±2.07 0.37±0.11 12.51±8.54 -0.07±0.06 1.59±1.1

CarCircle1 0.72±0.01 4.39±0.1 0.37±0.1 1.38±0.44 0.6±0.01 1.73±0.04 0.73±0.02 5.25±2.76 0.76±0.04 5.46±2.62 0.02±0.15 2.29±2.13 0.7±0.02 5.72±3.04

CarCircle2 0.76±0.03 6.44±0.19 0.54±0.08 3.38±1.3 0.66±0.0 2.53±0.03 0.72±0.04 6.58±3.02 0.74±0.04 6.82±2.95 0.44±0.1 2.69±2.61 0.77±0.03 7.99±4.23

CarGoal1 0.39±0.04 0.33±0.12 0.24±0.08 0.28±0.11 0.66±0.01 1.21±0.17 0.47±0.05 0.78±0.5 0.61±0.04 1.13±0.61 0.79±0.07 1.42±0.81 0.35±0.06 0.54±0.33

CarGoal2 0.23±0.02 1.05±0.07 0.14±0.05 0.51±0.26 0.48±0.01 1.25±0.14 0.3±0.05 1.44±0.99 0.28±0.04 1.01±0.62 0.65±0.2 3.75±2.0 0.25±0.04 0.91±0.41

CarPush1 0.22±0.04 0.36±0.12 0.14±0.03 0.33±0.23 0.31±0.01 0.4±0.1 0.23±0.03 0.43±0.19 0.21±0.02 0.54±0.28 -0.03±0.24 0.95±0.53 0.23±0.04 0.5±0.4

CarPush2 0.14±0.03 0.9±0.08 0.05±0.02 0.45±0.19 0.19±0.01 1.3±0.16 0.15±0.02 1.38±0.68 0.1±0.02 1.2±0.98 0.24±0.06 4.25±2.44 0.09±0.02 1.07±0.69

SwimmerVelocity 0.49±0.27 4.72±4.01 0.51±0.2 1.07±0.07 0.66±0.01 0.96±0.08 0.48±0.33 6.58±3.95 0.3±0.01 2.33±0.04 0.13±0.06 2.66±0.96 0.63±0.06 7.58±1.77

HopperVelocity 0.65±0.01 6.39±0.88 0.36±0.13 0.67±0.27 0.63±0.06 0.61±0.08 0.78±0.09 5.02±3.43 0.34±0.06 5.86±4.05 0.14±0.09 2.11±2.29 0.13±0.06 1.51±1.54

HalfCheetahVelocity 0.97±0.02 13.1±8.3 0.88±0.03 0.54±0.63 1.0±0.01 0.01±0.01 1.05±0.07 18.21±8.29 0.98±0.03 6.58±4.03 0.29±0.14 0.74±0.19 0.65±0.01 0.0±0.0

Walker2dVelocity 0.79±0.28 3.88±3.38 0.79±0.05 0.04±0.32 0.78±0.09 0.06±0.34 0.79±0.01 0.17±0.06 0.86±0.04 3.1±0.65 0.04±0.05 0.21±0.09 0.12±0.01 0.74±0.07

AntVelocity 0.98±0.01 3.72±1.46 0.98±0.01 0.29±0.1 0.98±0.0 0.39±0.12 1.02±0.01 4.15±1.63 -1.01±0.0 0.0±0.0 -1.01±0.0 0.0±0.0 1.0±0.0 3.28±2.01

SafetyGym

Average
0.46±0.35 3.03±5.32 0.34±0.31 0.75±0.8 0.54±0.21 1.06±0.59 0.5±0.32 3.29±4.97 0.39±0.43 2.7±3.39 0.27±0.37 2.79±3.86 0.37±0.32 2.65±3.24

BallRun 0.6±0.1 5.08±0.74 0.27±0.14 1.46±0.39 0.39±0.09 1.16±0.19 0.76±0.01 3.91±0.35 -0.47±0.0 5.03±0.0 0.22±0.0 1.27±0.12 0.59±0.0 3.52±0.0

CarRun 0.97±0.02 0.33±0.05 0.94±0.0 0.22±0.02 0.99±0.01 0.65±0.31 0.94±0.01 0.15±0.91 0.68±0.01 7.78±0.09 0.95±0.01 1.79±0.18 0.87±0.0 0.0±0.0

DroneRun 0.24±0.02 2.13±0.62 0.28±0.25 0.74±0.97 0.63±0.04 0.79±0.68 0.72±0.12 5.54±0.81 0.42±0.1 2.47±0.34 0.33±0.1 3.52±0.58 0.67±0.02 4.15±0.1

AntRun 0.72±0.06 2.93±2.4 0.65±0.15 1.09±0.84 0.72±0.04 0.91±0.42 0.76±0.07 5.11±2.39 0.15±0.02 0.73±0.07 0.03±0.02 0.02±0.09 0.61±0.01 0.94±0.69

BallCircle 0.74±0.15 4.71±1.79 0.52±0.08 0.65±0.17 0.77±0.06 1.07±0.27 0.69±0.11 2.36±1.04 0.86±0.18 3.09±1.53 0.64±0.01 0.76±0.0 0.7±0.04 2.61±0.79

CarCircle 0.58±0.25 3.74±2.2 0.5±0.22 0.84±0.67 0.75±0.06 0.95±0.61 0.63±0.19 1.89±1.37 0.74±0.1 2.18±1.33 0.71±0.02 0.33±0.0 0.49±0.05 3.14±2.98

DroneCircle 0.72±0.04 3.03±0.29 0.56±0.18 0.57±0.27 0.63±0.07 0.98±0.27 0.8±0.07 3.07±0.89 0.78±0.04 3.68±0.44 -0.22±0.05 1.28±0.97 0.26±0.03 1.02±0.46

AntCircle 0.58±0.19 4.9±3.55 0.4±0.16 0.96±2.67 0.54±0.2 1.78±4.33 0.58±0.25 2.87±3.08 0.65±0.2 5.48±3.33 0.0±0.0 0.0±0.0 0.17±0.1 5.04±6.74

BulletGym

Average
0.64±0.25 3.36±3.31 0.52±0.27 0.82±1.27 0.68±0.19 1.04±1.65 0.74±0.25 3.11±3.55 0.48±0.27 3.8±3.95 0.33±0.29 1.12±1.85 0.55±0.24 2.55±3.62

easysparse 0.17±0.05 1.54±1.38 0.11±0.08 0.21±0.02 0.17±0.14 0.23±0.32 0.78±0.0 5.01±0.06 0.11±0.0 0.86±0.01 -0.06±0.0 0.07±0.02 0.96±0.02 5.44±0.27

eastmean 0.43±0.02 2.82±0.0 0.04±0.03 0.29±0.02 0.45±0.11 0.54±0.55 0.71±0.06 3.44±0.35 0.08±0.0 0.86±0.01 -0.07±0.0 0.07±0.01 0.66±0.16 3.97±1.47

easydense 0.27±0.14 1.94±1.18 0.11±0.07 0.14±0.01 0.32±0.18 0.62±0.43 0.26±0.0 0.47±0.01 0.02±0.05 0.41±0.22 -0.06±0.0 0.03±0.01 0.5±0.1 2.54±0.53

mediumsparse 0.83±0.13 3.34±0.58 0.33±0.34 0.3±0.32 0.87±0.11 1.1±0.26 0.44±0.0 1.16±0.02 -0.03±0.0 0.17±0.02 -0.08±0.02 0.07±0.03 0.71±0.37 2.49±1.9

mediummean 0.77±0.21 2.53±0.83 0.31±0.06 0.21±0.0 0.45±0.39 0.75±0.83 0.78±0.12 1.53±0.21 -0.0±0.0 0.34±0.03 -0.08±0.0 0.05±0.02 0.76±0.34 2.05±0.92

mediumdense 0.45±0.27 1.47±1.65 0.24±0.0 0.17±0.0 0.88±0.12 2.41±0.71 0.58±0.21 1.89±1.19 0.01±0.02 0.28±0.16 -0.07±0.0 0.07±0.01 0.69±0.13 2.24±0.65

hardsparse 0.42±0.15 1.8±1.69 0.17±0.05 3.25±0.1 0.25±0.08 0.41±0.33 0.5±0.04 1.02±0.05 0.01±0.0 0.16±0.02 -0.05±0.0 0.06±0.01 0.37±0.1 2.05±0.27

hardmean 0.2±0.17 1.77±1.89 0.13±0.0 0.4±0.0 0.33±0.21 0.97±0.31 0.47±0.13 2.56±0.72 -0.0±0.0 0.21±0.02 -0.05±0.0 0.06±0.02 0.32±0.19 2.47±2.0

harddense 0.2±0.08 1.33±0.87 0.15±0.06 0.22±0.01 0.08±0.15 0.21±0.42 0.35±0.03 1.4±0.14 0.02±0.0 0.26±0.03 -0.04±0.01 0.08±0.01 0.24±0.21 1.68±2.15

MetaDrive

Average
0.42±0.33 2.06±1.63 0.18±0.27 0.58±0.35 0.42±0.31 0.8±0.61 0.54±0.35 2.05±2.7 0.02±0.09 0.39±0.52 -0.06±0.01 0.06±0.04 0.58±0.32 2.77±2.87

Table 3: Evaluation results in terms of the normalized reward and cost. The cost threshold
is 1. The ↑ symbol denotes that the higher reward, the better. The ↓ symbol
denotes that the lower cost (up to threshold 1), the better. Each value is reported
as: mean ± standard deviation over 180 episodes (3 seeds × 3 cost thresholds ×
20 evaluation episodes). Bold: Safe agents whose normalized cost is smaller than
1. Gray: Unsafe agents. Blue: Safe agent with the highest reward.

5.2 Main Results

We present the full experiment results on the 38 datasets in Table 3. Each value is averaged
over 3 distinct cost thresholds, 3 random seeds, and the final checkpoint. See Table 5 in the
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Appendix A for details about the hyperparameters for each method. Here, BC-All refers
to behavior cloning trained with all datasets, while BC-Safe refers to behavior cloning
trained exclusively with safe trajectories that satisfy the constraints.

The performance of tested algorithms provides valuable insights into the challenges of
offline safe learning. BC-All and BC-Safe, focusing on imitating policies rather than esti-
mating Q values, exhibit stark differences: BC-All achieves higher rewards but fails on safety
constraints; BC-Safe, fed with only safe trajectories, satisfies most safety requirements, al-
though with conservative performances and lower rewards. This comparison underlines the
essential trade-offs between safety and utility in offline safe RL, largely dictated by the
training dataset used.

CDT, through its advanced architecture and effective data utilization, offers a more
balanced performance. Despite struggling with complex tasks in high-stochasticity environ-
ments, such as SafetyGym tasks, CDT generally yields higher rewards while maintaining
safety, outperforming BC-Safe in most tasks.

Contrarily, all Q-learning-based algorithms, including BCQ-Lag, BEAR-Lag, and
CPQ, as well as COptiDICE, display performance inconsistencies, vacillating between
excessive conservatism and riskiness. CPQ, for example, obtains high rewards at significant
safety compromise in Button tasks, while achieving almost zero cost with low rewards in
MetaDrive tasks.

These inconsistencies expose the key challenge for Q-learning-based approaches in offline
safe RL: accurately estimating the safety performance of trained policies. In standard
offline RL, minor biases in Q estimation rarely impact overall performance. However, the
safety thresholds introduce new dynamics. Under-estimating cost Q values could result
in negligible safety penalties, causing overly risky policies, while overestimations can lead
to overly conservative behaviors. To tackle this challenge, future research could focus on
developing techniques for precise safety performance estimation in offline environments.
This is particularly crucial for the application and evolution of Q-learning-based approaches
in offline safe RL.

The disparity observed in the performance of learning algorithms across different sim-
ulation environments underscores the influence of task definition on algorithmic efficacy.
For instance, while numerous methods struggle to maintain safety in Safety Gymnasium’s
Circle tasks, the same algorithms can maintain safety in BulletSafetyGym’s Circle tasks.
Interestingly, their task definitions are almost identical. This divergence in outcomes can
be attributed to the different time horizons and simulation steps, where SafetyGymnasium
tasks typically feature longer time horizons with shorter simulation steps per iteration, while
BulletSafetyGym tasks have shorter time horizons, which could potentially facilitate train-
ing. Hence, task design crucially impacts algorithmic performance, suggesting that future
research should focus on the relationship between task definition, including CMDP design,
and algorithm efficacy to foster safer decision-making systems.

5.3 Post-process Filters Experiments

Our experiments further delve into a variety of evaluation criteria, as outlined in section 4.3,
through different data manipulation filters, notably data density, partial data discarding,
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and noise-level manipulation filters. The results are averaged among the corresponding
Bullet-Gym and Safety-Gymnasium suites of tasks.

Figure 5: Average performance with different percentage of dataset trajectories.

Data Density Filter. As displayed in Figure 5, applying a density filter to vary dataset
sizes reveals a trend: most algorithms exhibit a decrease in cost values as more data is
employed. This finding underscores the pivotal role of dataset size in influencing algorithmic
performance. Interestingly, the safety performance of BCQ-Lag and CPQ are noticeably
influenced by data sizes, suggesting that certain algorithms may be more susceptible to data
density. In contrast, CDT showcases robustness against sparse data, indicating its potential
utility in environments where data collection may be challenging.

Partial data discarding filter. The datasets could hardly be perfect and contain all
different situations, i.e., with complete coverage of all possible reward and cost returns. The
real-world data could be either overly conservative or overly risky. This filter mimics this
by selectively discarding trajectories within defined return ranges, which helps us gauge an
algorithm’s ability to handle unseen safety thresholds and learn from sub-optimal data.

Figure 6: Illustration of the partial data discarding filters.

More specifically, we adopt two data discarding strategies: 1) discarding the top 50%−
100% reward return trajectories within the 0%−50% cost return regions to create a tempt-
ing dataset (Liu et al., 2022b); 2) discarding the top 50%−100% reward return trajectories
within the 50%−100% cost return regions to create a low-reward and sub-optimal dataset.
The first dataset is tempting because it contains high-reward and high-cost trajectories that
could potentially lead the agent to pursue risky behaviors. The learning algorithm must bal-
ance high-reward-high-cost and low-reward-low-cost performance, posing more challenges
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than the full datasets. On the contrary, the second low-reward dataset could lead to a
conservative learned policy. Though the trained agent is safe, the reward could also be low.
The tempting dataset and low-reward dataset are shown in Figure 6.

Figure 7: Average performance with different data discarding strategy.

Figure 7 shows the performance under different data-discarding strategies. We can see
that The tempting datasets usually lead to high costs and high rewards, i.e., tempting
policies, in the BulletSafetyGym tasks. While the low-reward datasets tend to reduce the
cost, making the learning algorithm safer. These results consolidate the inherent trade-offs
between the reward and cost in the safe learning problem. It also provides an insight that we
can adjust the learning difficulty by manipulating the shape of the datasets. Investigating
how to selectively use data in the dataset for learning to enhance safety and performance
could be an interesting future direction.

Noise-level manipulation filter. To evaluate the training robustness of offline learn-
ing algorithms, we use this filter to create such datasets that contain different portions
(α% = 0%, 1%, 5%, 10%) of outlier trajectories. Figure. 8 illustrates the performance im-
pact of the noise data filter, which increases the percentage of outlier trajectories. Several
algorithms, such as CPQ in SafetyGymnasium tasks, exhibit drastic performance degrada-
tion with a substantial reward reduction and cost increase. This phenomenon underscores
the critical importance of outlier sensitivity in the evaluation of offline safe RL algorithms.
Excessive sensitivity to outliers may introduce instability during the learning process, lead-
ing to suboptimal safety and performance outcomes.

Figure 8: Average performance with different percentages of outlier trajectories.

These experiments offer insights into the robustness and generalization capability of
offline safe RL algorithms in the face of dataset variations. From a broader perspective, these

14



Datasets and Benchmarks for Offline Safe Reinforcement Learning

findings illuminate the intricate dynamics and potential difficulties inherent in offline safe
RL. The challenge lies in maintaining a delicate balance between reward optimization and
safety assurance. Algorithms’ performance on this front further underscores the complexity
of the datasets used, emphasizing the need for more research into handling these challenges.
Through our benchmarks, we hope to foster a deeper understanding of offline safe RL and
to accelerate its real-world applications.

6 Challenges and Future Directions

While our benchmark study has sought to cover a comprehensive range of factors in offline
safe learning, there are also limitations. For example, our study uses only three prevalent
safe RL environments. While they provide a broad context for algorithm evaluation, we
encourage the community to contribute more datasets to this field. There are also many
challenges in RL safety that remain untouched. Below we outline some open problems and
potential future directions.

1. Performance Metrics and Benchmarks: While we have provided an evaluation
framework, there is still room for more sophisticated performance metrics. These could
account for various real-world factors, such as environmental changes (Chen et al., 2021a),
adversarial attacks (Liu et al., 2022b), and more.

2. Interpretability and Safety Certification: As these algorithms become more
complex, the need for explainability and theoretical safety guarantees become more pressing
(Amodei et al., 2016; Verma et al., 2018; Luo and Ma, 2021). Ensuring that the actions
and decisions of these algorithms can be understood by humans and can be certified to be
safe will be crucial for their wider acceptance and adoption.

3. Data Efficiency: Offline safe RL algorithms are trained from datasets, making data
efficiency a critical aspect (Schwarzer et al., 2021). Future research could focus on improving
data utilization, possibly through advances in sample-efficient learning techniques or data
augmentation strategies (Sinha et al., 2022; As et al., 2022).

4. Few-shot Online Adaptation: Offline pretraining plus online adaptation is be-
coming a popular training paradigm in wide domains (Kumar et al., 2022; Radosavovic
et al., 2023). Therefore, the ability of offline safe learning algorithms to adapt to new
environments safely with few shot samples is an area ripe for research (Zhu et al., 2020).

5. Versatility: The capacity of an algorithm to adapt to varying safety constraints with-
out the need for substantial re-tuning or re-training is pivotal. Currently, only sequential-
modeling-based methods (Liu et al., 2023b; Zhang et al., 2023) can effectively achieve this,
but there is substantial room for improvement.

6. Ethics and Fairness: As offline learning is increasingly deployed in sensitive areas
such as healthcare, considerations around ethics and fairness become particularly important
(Jabbari et al., 2017; Thomas et al., 2019; Deng et al., 2022). Future work could focus on
integrating these factors into the offline safe RL framework.

Addressing these challenges will help drive the field forward, pushing the boundaries
of what offline safe RL can achieve. We aspire for the discussions and resources furnished
in this work to ignite advancements and foster the evolution of learning-based decision-
making systems. Our ultimate goal is to contribute to a future where these systems can be
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safely and reliably incorporated into real-world applications, delivering greater efficiency,
effectiveness, and most importantly, safety.

Broader Impact Statement

This paper introduces a benchmarking suite designed for offline safe RL, which is critical in
safety-sensitive domains like autonomous driving and robotics. Our benchmark, featuring
a data collection pipeline, post-processing filters, and baseline implementations, offers re-
searchers extensive resources to test and refine safe RL algorithms. While we focus on safety,
the limitation to three safe RL environments and datasets could inadvertently lead to biases
in algorithm development. Researchers must be cautious about overfitting to these environ-
ments and remain vigilant about testing their algorithms in diverse, real-world scenarios.
Ultimately, We would love to see the offline safe RL applications move from simulated do-
mains to real-word domains, using real-word data. As offline safe RL algorithms become
more complex, they might become less interpretable, which could pose challenges in under-
standing and explaining algorithm decisions. It is important to expand beyond the current
scope of environments and datasets to avoid biases and address untouched challenges in
RL safety including interpretability, data efficiency, online adaptation, and versatility to
facilitate fairness, accountability, and transparency in AI development and deployment.
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Appendix A. Benchmark and Dataset Details

A.1 Hosting, Licensing, and Maintenance Plan

Our dataset and benchmark are accessible through the following URL: www.offline-saferl.
org. We provide three open-sourced packages, FSRL 1 for expert safe RL policies, DSRL 2

for managing datasets and environment wrappers, and OSRL 3 for offline safe learning algo-
rithms.

The datasets will be hosted on our designated platform accessible via the DSRL package.
They are also directly downloadable at http://data.offline-saferl.org/download. All
datasets are licensed under the Creative Commons Attribution 4.0 License (CC BY). As for
maintenance, we have established a long-term plan to keep the datasets up-to-date, correct
any potential issues, and provide support to users. We also aim to further expand these
datasets based on new advances in the field, thus continually promoting progress in offline
safe RL research.

The FSRL package is under the MIT License, supporting open access and flexibility
for modification and reuse. The DSRL package and OSRL package are licensed under the
Apache 2.0 License, following D4RL (Fu et al., 2020) and CORL (Tarasov et al., 2022).
This codebase will also be regularly maintained.

A.2 The FSRL package with safe RL experts for data collection

The FSRL (Fast Safe Reinforcement Learning) package provides modularized imple-
mentations of safe RL algorithms based on PyTorch (Paszke et al., 2019) and the Tianshou
framework (Weng et al., 2021). It offers high-quality implementations of popular safe RL
algorithms, serving as an ideal starting point for those looking to explore and experiment
in this field. We use this package for dataset collection.

The safe RL algorithms that have been implemented in FSRL are presented in Ta-
ble 4. They include a first-order method FOCOPS (Zhang et al., 2020), a second-order
method CPO (Achiam et al., 2017), Lagrangian-based methods (Stooke et al., 2020), and
probabilistic-inference-based method CVPO (Liu et al., 2022a).

Algorithm Type Description

CPO On-Policy Constrained Policy Optimization (Achiam et al., 2017)

FOCOPS On-Policy First Order Constrained Optimization in Policy Space (Zhang et al., 2020)

PPOLagrangian On-Policy PPO (Schulman et al., 2017) with PID Lagrangian (Stooke et al., 2020)

TRPOLagrangian On-Policy TRPO (Schulman et al., 2015) with PID Lagrangian (Stooke et al., 2020)

DDPGLagrangian Off-On-Policy1 DDPG (Lillicrap et al., 2015) with PID Lagrangian (Stooke et al., 2020)

SACLagrangian Off-On-Policy1 SAC (Haarnoja et al., 2018) with PID Lagrangian (Stooke et al., 2020)

CVPO Off-Policy Constrained Variational Policy Optimization (Liu et al., 2022a)

Table 4: Safe RL algorithms implemented in FSRL. 1Off-On-Policy implies that the base
learning algorithm is off-policy, but the Lagrange multiplier is updated in an on-
policy fashion.

1. https://github.com/liuzuxin/FSRL
2. https://github.com/liuzuxin/DSRL
3. https://github.com/liuzuxin/OSRL
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Dataset collection details. We collect datasets by training the implemented algo-
rithms with gradually increasing or decreasing cost thresholds for each environment. By
varying the algorithm, training hyper-parameters, and threshold, we are able to collect a
diverse set of trajectory datasets for each task. These datasets were then merged and ap-
plied with a density filter to discard redundant trajectories with high concentrations in the
cost-reward return space.

Our dataset collection process was optimized using our carefully tuned hyper-parameters
and two strategies: 1) Application of a density filter to the dataset buffer during collection.
This step is instrumental in preventing memory overflow. Without the filter, each task will
record all collected trajectories, consuming substantial memory and leading to inefficient use
of computing resources. 2) Maintenance of a relatively high minimum standard deviation
(e−2) for stochastic policies to foster exploration. This approach greatly enhances the
diversity of the collected datasets. It becomes particularly relevant when cost thresholds
are varied during training; an early convergence of the standard deviation may impede
exploration and prevent the algorithm from adapting to new thresholds.

Details of the training configurations and hyper-parameters are available in the code.

A.3 The DSRL package to manage the datasets and filters

The DSRL (Datasets for Safe Reinforcement Learning) package serves as an offline
safe RL counterpart to the widely-used D4RL. DSRL follows the same usage and API
structure as D4RL (Fu et al., 2020), making it easily accessible to researchers already
familiar with D4RL. Moreover, it provides clear documentation and examples to guide
users. DSRL also ensures scalability, allowing researchers to handle large-scale datasets
effectively and customize their own datasets and environments, which is crucial for testing
the efficiency and scalability of their algorithms.

We provide an example code to use the dataset:

import gymnasium as gym

import dsrl

env = gym.make(’OfflineCarCircle -v0’)

# Each task is associated with a dataset with 7 keys:

# [observations , next_observatiosn , actions , rewards ,

# costs , terminals , timeouts]

dataset = env.get_dataset ()

# An N x obs_dim Numpy array of observations

print(dataset[’observations ’].shape)

# Apply dataset filters [optional]

# dataset = env.pre_process_data(dataset , filter_cfgs)

# dsrl abides by the OpenAI gym interface

obs , info = env.reset ()

obs , reward , terminal , timeout , info = \

env.step(env.action_space.sample ())

cost = info["cost"]
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Upon running the script, the data will be automatically fetched and stored in the
/home/user/.dsrl/datasets directory if it does not already exist. This setup follows
a similar procedure as seen in D4RL.

A.4 Hyperparameters for OSRL algorithms

The OSRL (Offline Safe Reinforcement Learning) package is a comprehensive library
of offline safe RL algorithm implementations. The framework design is inspired by the
CORL (Tarasov et al., 2022) and CleanRL (Huang et al., 2022) libraries, which are widely
used by offline RL and online RL researchers due to their high-quality and easy-to-follow
single-file implementations. For Q-learning-based methods, we use Gaussian policies with
mean vectors given as the outputs of neural networks, and with variances that are separate
learnable parameters. The policy networks and Q networks for all experiments have two
hidden layers with ReLU activation functions. For Lagrangian-based methods, the KP ,KI

and KD are the PID parameters that control the Lagrangian multiplier. As for CDT, a
fixed set of hyperparameters is used across all tasks. The majority of common parameters,
including the gradient steps, remain consistent for all the methods employed. Each method
is evaluated with three distinct cost thresholds, three random seeds (0, 10, 20), and the
final checkpoint in training. The primary hyperparameters employed in the experiments
are summarized in Table 5, and more algorithm-specific parameters can be found in the
GitHub repository.

Common Parameters BulletGym SafetyGymnasium MetaDrive Parameters of CDT All tasks

Actor hidden size [256, 256] for all methods except CDT Number of layers 3

VAE hidden size [400, 400] BCQ-Lag, BEAR-Lag, CPQ Number of attention heads 8

Cost thresholds [10, 20, 40] [20, 40, 80] [10, 20, 40] Embedding dimension 128

Gradient steps 100000 200000 Batch size 2048

[KP ,KI ,KD] [0.1, 0.003, 0.001] BCQ-Lag, BEAR-Lag Context length K 300

Batch size 512 Learning rate 0.0001

Actor learning rate 0.0001 Droupout 0.1

Critic learning rate 0.001 Adam betas (0.9, 0.999)

Table 5: Hyperparameters for OSRL

A.5 Author Responsibility Statement

As the authors, we hereby affirm that we bear full responsibility for the datasets provided
in this submission. We confirm that to the best of our knowledge, no rights are violated
in the collection, distribution, and use of these datasets. They are provided under the
Creative Commons Attribution 4.0 International License, which permits unrestricted use,
distribution, and modification, provided appropriate credit is given to the original authors.
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Appendix B. Dataset Documentation and Visualization

B.1 Dataset Breakdown Details and Intended Uses

The datasets included in this submission are intended for use in the research and develop-
ment of offline safe learning algorithms. They are diverse, encompassing three different safe
RL environments and are designed to test algorithms on a range of safety thresholds. Doc-
umentation of the dataset, including a detailed breakdown of environments, tasks, and data
sizes, can be found in the following Table 6. The Max Cost column denotes the maximum
cost return in the dataset trajectories.

Benchmarks Task Max Timestep Action Space State Space Max Cost Trajectories

SafetyGymnasium

SafetyPointGoal1-v0 1000 2 60 100 2022

SafetyPointGoal2-v0 1000 2 60 200 3442

SafetyPointButton1-v0 1000 2 76 200 2268

SafetyPointButton2-v0 1000 2 76 250 3288

SafetyPointPush1-v0 1000 2 76 150 2379

SafetyPointPush2-v0 1000 2 76 200 3242

SafetyPointCircle1-v0 500 2 28 200 1098

SafetyPointCircle2-v0 500 2 28 300 895

SafetyCarGoal1-v0 1000 2 72 120 1671

SafetyCarGoal2-v0 1000 2 72 200 4105

SafetyCarButton1-v0 1000 2 88 250 2656

SafetyCarButton2-v0 1000 2 88 300 3755

SafetyCarPush1-v0 1000 2 88 200 2871

SafetyCarPush2-v0 1000 2 88 250 4407

SafetyCarCircle1-v0 500 2 40 250 1271

SafetyCarCircle2-v0 500 2 40 400 940

SafetySwimmerVelocity-v1 1000 2 8 200 1686

SafetyHopperVelocity-v1 1000 3 11 250 2240

SafetyHalfCheetahVelocity-v1 1000 6 17 250 2495

SafetyWalker2dVelocity-v1 1000 6 17 300 2729

SafetyAntVelocity-v1 1000 8 27 250 2249

BulletSafetyGym

SafetyBallRun-v0 100 2 7 80 940

SafetyCarRun-v0 200 2 7 40 651

SafetyDroneRun-v0 200 4 17 140 1990

SafetyAntRun-v0 200 8 33 150 1816

SafetyBallCircle-v0 200 2 8 80 886

SafetyCarCircle-v0 300 2 8 100 1450

SafetyDroneCircle-v0 300 4 18 100 1923

SafetyAntCircle-v0 500 8 34 200 5728

MetaDrive

SafeMetaDrive-easydense-v0 1000 2 261 85 1000

SafeMetaDrive-easysparse-v0 1000 2 261 85 1000

SafeMetaDrive-easymean-v0 1000 2 261 85 1000

SafeMetaDrive-mediumdense-v0 1000 2 261 50 1000

SafeMetaDrive-mediummean-v0 1000 2 261 50 1000

SafeMetaDrive-mediumsparse-v0 1000 2 261 50 1000

SafeMetaDrive-harddense-v0 1000 2 261 85 1000

SafeMetaDrive-hardsparse-v0 1000 2 261 85 1000

SafeMetaDrive-hardmean-v0 1000 2 261 85 1000

Table 6: Dataset details. The Max Cost column means the maximum cost return in the
dataset trajectories.
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B.2 Dataset cost-reward-return plot visualization.

We visualize the cost-reward-return plot as described in section 3. Each dot is associated
with trajectories with corresponding cost and reward returns. Specifically, for each trajec-
tory, we compute its total reward and total cost. Plotting these points on a two-dimensional
plane where the x-axis represents the total cost and the y-axis represents the total reward,
we obtain a scatter plot that characterizes the trade-offs between reward maximization and
constraint satisfaction.

High diversity in a dataset is reflected by a wide spread of points on the cost-reward plot.
This implies that the dataset contains trajectories that exhibit various trade-offs between
cost and reward, thus providing rich training data for offline safe RL algorithms to learn
from. On the contrary, a dataset with low diversity will have points that cluster closely
together, indicating limited variety in terms of cost-reward trade-offs. Such a plot serves as
an effective and intuitive tool for understanding the properties of offline safe RL datasets.
It offers valuable insights into the dataset’s composition, revealing the degree of challenge
and diversity embedded within. This, in turn, aids in selecting appropriate datasets for
benchmarking and comparison of various offline safe RL algorithms.

Figure 9: Visualization of BulletSafetyGym dataset trajectories on the cost-reward return space.

Figure 10: Visualization of Velocity dataset trajectories on the cost-reward return space.

Analyzing the figures provided, we can generally discern an increasing trend for the
reward frontiers in relation to the cost returns. In other words, as cost return increases,
so too might the reward return, underscoring the inherent trade-off between reward and
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Figure 11: Visualization of SafetyGymnasium dataset trajectories on the cost-reward return space.

cost. This phenomenon aligns with findings discussed in previous works (Liu et al., 2022b,
2023b). It’s particularly pronounced in BulletSafetyGym tasks (Figure 9) and the velocity
tasks (Figure 10), as these tasks are largely deterministic - their initial states and transition
dynamics are not heavily influenced by randomness. We can thus infer that loosening the
safety cost threshold may open up opportunities for task utility reward improvement.

In contrast, the same clear increasing trend is not observable in many highly stochastic
SafetyGymnasium tasks (Figure 11), such as Goal, Button, and Push. These tasks introduce
an element of randomness in the environment, where the initial state is drawn from a
random distribution, significantly impacting the final reward and cost. For instance, in the
Goal task, random initialization might result in a direct path between the agent’s start
position and the goal, enabling the completion of the task with zero constraint violations.
Consequently, the datasets contain high-reward, low-cost trajectories due to these ”lucky”
initializations.

For the autonomous driving tasks in MetaDrive (Figure 12), the cost results from three
safety-critical scenarios: (i) collision, (ii) out of road, and (iii) over-speed. In this case,
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Figure 12: Visualization of MetaDrive dataset trajectories on the cost-reward return space.

the environment’s stochasity mainly comes from the random initialization of surrounding
traffic flows and the map configuration. To foster the diversity of sampled trajectories
within offline datasets, we utilize varying parameters to moderate the aggressiveness of the
Intelligent Driver Model (IDM) policies (Kesting et al., 2007) of the ego vehicles. We can
also observe an increasing trend for the reward frontiers with respect to the episodic cost
returns in most of these environments.

It’s worth noting, however, that even though the cost-reward return plot of the dataset
might not accurately reflect the reward-cost trade-off, the training curves of the expert
policies do display a significant trend. This is because each policy is evaluated on multiple
episodes and uses expectations as the evaluation metrics. In other words, under varying
cost conditions, the cost value function and the reward value function of the policy can
still reflect the trade-offs when considering expectations. This concept is discussed in more
detail in (Liu et al., 2022b).

29


	Introduction
	Related Work
	Preliminaries
	Constrained Markov Decision Process and Safe RL
	Characterizing Dataset with Constraints

	Datasets and Benchmarks
	Dataset Collection
	Dataset Wrapper and Post-process Filters
	Evaluating Offline Safe RL Algorithms
	Offline Safe RL Benchmarks
	Evaluation Metrics

	Experiments and Analysis
	Experiment Settings
	Main Results
	Post-process Filters Experiments

	Challenges and Future Directions
	Benchmark and Dataset Details
	Hosting, Licensing, and Maintenance Plan
	The FSRL package with safe RL experts for data collection
	The DSRL package to manage the datasets and filters
	Hyperparameters for OSRL algorithms
	Author Responsibility Statement

	Dataset Documentation and Visualization
	Dataset Breakdown Details and Intended Uses
	Dataset cost-reward-return plot visualization.


