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Abstract

We present HAIR, the first dataset of expert-annotated historical aerial images covering
different spatial regions spanning several decades. Historical aerial images are a treasure
trove of insights into how the world has changed over the last hundred years. Understanding
this change is especially important for investigating, among others, the impact of human
development on biodiversity. The knowledge contained in these images, however, has not
yet been fully unlocked, as this requires semantic segmentation models that are optimized
for this type of data. Current models are developed for modern color images, and they
do not perform well in historical data that is typically in grayscale. Furthermore, there
is no benchmark historical grayscale aerial data that can be used to develop specific seg-
mentation models for it. We here assess the issues of using semantic segmentation models
designed for modern color images in historic grayscale data, and introduce HAIR as the
first benchmark dataset of large-scale historical aerial grayscale images. HAIR contains
≈ 9× 109 pixels of high-resolution aerial land images covering the years within the period
1947 - 1998, with detailed annotations performed by domain experts. By using HAIR, we
show that pre-training on modern satellite images converted to grayscale does not improve
the performance compared to training only on historic aerial grayscale data, stressing the
relevance of using actual historical and grayscale aerial data for these studies. We further
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show that state-of-the-art models underperform when trained on grayscale data compared
to using the same data in color, and discuss the challenges faced by these models when
applied directly to aerial grayscale data. Overall, HAIR appears as a powerful tool to aid in
developing segmentation models that are able to extract the rich and valuable information
from historical grayscale images.

Keywords: Historical Aerial Images, Semantic Segmentation, Grayscale Imagery, Dataset
Benchmarking

1 Introduction

Historical aerial images is a treasure trove of insights into how the world has changed over
the last hundred years, as they have been captured systematically since the early 1900s (The
U.S. National Archives and Records Administration, 2023; Historic Environment Scotland,
2023). For example, since then the human population has grown from 1.65 Billion to 7.9
Billion in 2022 (Roser et al., 2013). Population growth has led to an in creasing pressure on
all ecosystems on the Earth. The pressure is now so severe that UN has declared the decade
from 2021 to 2030 as the UN Decade of Restoration. The initiative is described as ”a rally-
ing call for the protection and revival of ecosystems all around the world”. Furthermore, in
December 2022, 188 governments signed the Kunming Montreal Global Biodiversity Frame-
work (Stephens, 2023). It states: ”Raising awareness on the critical role of science, technol-
ogy and innovation to strengthen scientific and technical capacities to monitor biodiversity,
address knowledge gaps and develop innovative solutions to improve the conservation and
sustainable use of biodiversity.” This work is one of hopefully many initiatives to address
the knowledge gaps and support the development of innovative solutions for addressing
efficient restoration of ecosystems. Understanding the changes in the landscape is crucial
for sustainable development (Mercuri and Florenzano, 2019). For example, rivers and their
surrounding landscape have changed dramatically over the years (Grill et al., 2019; Belletti
et al., 2020), which has consequences for the riparian and aquatic ecosystems and, conse-
quently, ecosystem services provided by rivers (Petsch et al., 2023). Understanding how
rivers have evolved over time is important for the planning of river restoration (Wohl, 2019)
with a goal to recover the functions of river systems lost through anthropogenic activity.
Imagery can be used in the assessment of historic conditions (Morgan et al., 2010), impor-
tant in defining a baseline for the evaluation of environmental changes and for developing
working restoration measures (Guzelj et al., 2020). Channel narrowing and vegetation en-
croachment on rivers have been seen as responses to flow regulation and river training works
(Liébault and Piégay, 2002), and this can influence natural habitats for fish and inverte-
brates. Loss of gravel bars and a larger containment of the river channel can lead to loss
of species with specific habitat requirements (Åström et al., 2017). The development of
floodplains and increased vegetation can influence flood levels and economic losses during
high flood events. Aerial images have played a major role in capturing the aforementioned
population growth and its effects, and they are extremely valuable for many other studies
spanning into the past. In contrast, satellite images have only been captured systematically
since the 1990s (Loveland et al., 2000).

The data found in historical aerial images is important for reconstructing river develop-
ment over time but is still mainly based on time-consuming manual delineation of features
(Piégay et al., 2020). Therefore, automatic mapping would advance the utilization and
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Figure 1: Ambiguous areas are marked in red. Left and middle show cases where gravel and
human construction can be confused while right is an example where vegetation
and water could be confused.

potential of using such images. Image recognition, specifically semantic segmentation, can
be utilized for this mapping, but this technique can encounter a number of problems when
applied to historical aerial images: (i) First, semantic segmentation relies on the availability
of a large dataset of images annotated into desired habitats, but there are currently no large
and carefully annotated datasets of historical aerial images. (ii) State-of-the-art segmenta-
tion models are designed for color images, but the historical data is typically in grayscale.
Only panchromatic (grayscale) historic photographs are available for aerial images cap-
tured before the 2000s (Gergel and Turner, 2017). (iii) Modern segmentation models do
not account for possible effects related to changes in camera technology over time, which
are abundant in past data. A majority of the historical aerial images are captured using
an analog film-based camera. The captured films are then scanned and converted into a
digital format (Buller, 2023).

In this paper, we will assess in detail the difficulties faced by state of the art semantic
segmentation models when applied to historical grayscale data through a number of ex-
periments. Furthermore, to allow these and future analysis with historical aerial grayscale
images, we introduce HAIR, the first benchmark dataset of historical aerial grayscale images.
HAIR only contains grayscale images, as historical images are only available as panchromatic
photographs. For semantic segmentation models to perform reliably on historical aerial im-
ages, they should extract information from these grayscale images. As the first benchmark
dataset of historical aerial grayscale images, HAIR enables more research on semantic seg-
mentation of historical aerial images. It is worth mentioning that in this work, we do not
focus on a dataset that can directly be used for the analysis of changes in the landscape over
time; instead, we focus on semantic segmentation of historical aerial images captured before
the 2000s that plays as a bottleneck in studying the changes in the landscape. HAIR is the
first annotated large-scale dataset for semantic segmentation of historical aerial imagery of
land cover, and it is characterized by four aspects that may challenge segmentation models
when applied to it: 1) as mentioned above, camera technology has advanced significantly
over time, which results in HAIR presenting a varying image quality based on when images
are captured, 2) the images are also affected by lightning conditions that are influenced
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by factors such as the time of the day and the airplane’s direction during the capture, 3)
HAIR also shows class imbalance, as some classes are underrepresented due to the nature
of the aerial images, and finally 4) the images are in grayscale, which means that they
carry less information than satellite images including RGB, as well as sometimes infra red,
channels. In addition to experiments comparing models and learning strategies to improve
model performance, we will discuss the effect of these four characteristics when training the
the segmentation models with HAIR images.

Contributions:

• We show the inability of using current satellite color image datasets for training seg-
mentation models targeting aerial grayscale historic data analysis. This highlights
the value of having an actual dataset for extracting useful information from historical
aerial grayscale images.

• We release HAIR1, the first dataset of high-resolution, historical aerial images with
high-quality annotations of riverscapes made by experts. The dataset will be released
under the CC BY-SA 4.0 license2 and contains roughly 8.72 billion annotated pixels
surpassing widely recognized land cover datasets, such as DeepGlobe (Demir et al.,
2018), and is on par with Inria (Maggiori et al., 2017) . HAIR covers the years
between 1947 - 1998, which is the largest time span covered by a high-resolution
historical dataset to date. Images in HAIR are in grayscale. All these features make
HAIR the first state-of-the-art dataset for historical aerial image data analysis 3.

• We introduce an out-of-distribution (OOD) test set to evaluate how segmentation
models generalize on spatial and temporal changes in the data.

• We compare various state-of-the-art segmentation models on HAIR to provide future
established references. Also, we assess how four main properties specific to historical
aerial grayscale data impact the performance of the models and how these can be
addressed for improvement in future studies.

2 Problem Description

Historical aerial images cover a spatial region captured at a given time. We define X to be
the set of all historical aerial images of landscapes, such that:

x ∈ X , x ∈ RN×W×H (1)

where N is the number of channels, which would be 3 for RGB and 1 for grayscale images,
W is the image width in pixels, and H is the image height in pixels. Every image x is a
snapshot from a spatial region s ∈ S, and is captured at a time point t ∈ T , so that xs,ti

is image i of region s at time t, and X S,T is the set of all images covering all regions for
any possible time periods. A region could be specified very concretely as, for example, GPS

1. Because of its size (20GB), HAIR is not uploaded in supplementary materials.
2. https://creativecommons.org/about/cclicenses/
3. The dataset and benchmarks are publicly available at https://riverscapes.ai.
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year
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y

Gaula 1947

Surna 1963Gaula 1963

Figure 2: A simplified depiction of how images in our dataset are distributed in space and
time. Each rectangle in the x-y plane represents an aerial image.

coordinates or more loosely as a name of an area, such as New York city or the Mississippi
river. Similarly, time could be defined using any unit of time, for example the year of
capture. Therefore, XNY,1963 is the set of all historical aerial images of New York city from
1963, while xNY,1963

1 is the specific image i = 1 from the set of New York city images from
1963.

To analyze how a region of land has changed over time, each pixel p of an image, xi,
must be mapped into a desired class c ∈ C. The result of this mapping can be defined as
yi = C ×W ×H, and Y represents the set of mappings for all historical aerial images of
landscapes that have been semantically segmented. The function f(x) = y is a semantic
segmentation function that performs this mapping so that each image xs,ti has a correspond-
ing mapping ys,ti . The function f can be estimated through supervised learning on a subset
AS,T ⊂ X S,T of all images for which we already have the mapping. To evaluate how well
the estimated function f generalize, we set aside a subset of the data, typically 10-20%, for
testing IS,T ⊂ AS,T . The test set IS,T is an in-distribution dataset (IID), which if sampled
randomly should reflect the distribution of the training data.

However, given that the goal is to perform semantic segmentation on other images in
X S,T than those in AS,T , f must generalize beyond the training data. For example, one could
envision that one would use a mapping function, f , that is trained on aerial images of New
York in 1963, XNY,1963, to map aerial images of New York from 1973, XNY,1973, or to map
aerial images of Philadelphia from 1963, XP,1963. Both sets are out-of-distribution compared
to the one that the mapping function was trained on. The set XNY,1973 is temporally different
while the set XP,1963 is spatially different. Generally, one would expect that aerial images
that are captured close both temporally and spatially would be more similar than ones
that are captured further away along one or two of the dimensions. Both Philadelphia
and New York are big cities in USA, so we would expect them to be more similar than
i.e. aerial images from the desert of Sahara. While aerial images from different years of
the same region are expect to be somewhat similar as landscapes, usually, changes slowly,
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the camera technology will also change over time, so that the aerial images will change
subtly even though the landscapes are quite similar. Hence, images of New York from 1973
are expected to be more similar to images from 1963 than images from 2023, as camera
technology has improved so much over time. To evaluate the generalization ability of the
function f , we design a set OS,T , containing images that are either spatially or temporally
different than AS,T . The test set OS,T is an out-of-distribution dataset (OOD).

In this work we focus on riverscapes as a subset of all the possible landscapes. In
other words, we consider a selection of landscapes of riverscapes as the AS,T set. Figure 2
illustrates a simplified overview of how images in our dataset are distributed in space and
time. Images of rivers AGaula,1947 and AGaula,1963 are temporally different, while images of
rivers AGaula,1963 and ASurna,1963 have the same temporal characteristics and are spatially
different.

Estimating a function that can generalize well on historical aerial images of riverscapes
is challenging, as these images cover various areas and are captured on different times. For
evaluation of the estimated function, we designed two test sets, IID and OOD, in the same
way as described above. To make the IID test set, we randomly sample approximately
10% of the AS,T . The rest of 90% of AS,T can be used for training and validation of
the function we aim to estimate. To evaluate the generalization ability of the estimated
functions, we designed an OOD test set. The OOD test set consists of two separate sets, a
set of temporally different images, and another set of spatially different images.

The OOD test set takes into account the shift in geographical location, time of the
capture, and camera technologies used for capturing of the images. Our definition of OOD
is similar to the one provided by Hendrycks et al. (2021), which considers images with
different geographical locations, time of capture, and camera technology used for capturing
the image, etc., to be the OOD set. The section 4 describes our dataset, HAIR, in detail.

3 Related work

Since the introduction of FCN (Long et al., 2015), the first end-to-end deep learning semantic
segmentation model, numerous studies have proposed CNN-based architectures to enhance
performance. These architectures include U-Net (Ronneberger et al., 2015), ParseNet (Liu
et al., 2015), PSPNet (Zhao et al., 2017), DeepLab (Chen et al., 2014, 2017a,b, 2018), and
HRNet (Wang et al., 2020). Recently, there has been a growing interest in pure transformer-
based architectures inspired by the success of Visual Transformers (Dosovitskiy et al., 2020).
For instance, Segmentor (Strudel et al., 2021), Segformer (Xie et al., 2021), and Swin-Unet
(Cao et al., 2021) are pure transformer-based architectures. Additionally, some studies
propose models combining transformers and CNNs, like TransUnet (Chen et al., 2021).
Minaee et al. (2021), provide an overview of the segmentation models. In land cover classi-
fication, several models have been developed for datasets like DeepGlobe (Demir et al., 2018)
and LandCover.ai (Boguszewski et al., 2021). FPN with ResNet50 backbone (Seferbekov
et al., 2018), and U-Net with Lovasz-Softmax (Berman and Blaschko, 2017) loss function
(Rakhlin et al., 2018) were used for DeepGlobe. Another group of studies, modified the
well-known architectures or proposed new architectures, specific for remote sensing data.
NU-Net (Samy et al., 2018) modified U-Net to capture more global information and was
used for DeepGlobe dataset. DiresUNet (Priyanka et al., 2022) utilized dense global spatial
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Table 1: Semantic segmentation datasets of land cover classification.
Dataset #Classes Resolution #Channels #Pixel Image size

DeepGlobe Land Cover (Demir et al., 2018) 7 0.5 RGB 6.87 ∗ 109 2448x2448
LandCover.ai (Boguszewski et al., 2021) 3 0.25,0.5 RGB 2.98 ∗ 109 9000x9500;4200x4700
Agriculture-Vision (Chiu et al., 2020) 9 0.1,0.15,0.2 RGB+NIR 2.26 ∗ 1010 512x512

Extended Agriculture-Vision (Wu et al., 2023) 9 0.1,0.15,0.2 RGB+NIR 810.0 ∗ 1010 15000x15000
HAIR 6 0.2 Grayscale 8.72 ∗ 109 8000x6000;6400x4800;16000x12000

pyramid pooling module (DGSPP) to help with the global context information extraction
and was used for landcover.ai.

The size of aerial and satellite images are usually very large, e.g. Inria Aerial (Maggiori
et al., 2017) contains 5000×5000 images and introduces challenges with the memory capacity
on GPU’s. Therefore images are typically downsampled or patched in order to fit in GPU
memory. GLNet (Chen et al., 2019) used two branches of both downsampled and patched
input and combine them in order to take advantage of global context.MagNet (Huynh et al.,
2021) starts with segmenting the smallest scale of input image, and then progressively refines
the segmentation output by increasing the input scale. The development of models in the
field has predominantly focused on datasets containing images with three or more channels,
so the research of semantic segmentation for grayscale images have been relatively limited.

Semantic segmentation of historical images is a particularly challenging task since the
data varies in spatial and temporal dimensions. When dealing with spatial data, the un-
derlying pattern of the data varies across the Earth’s surface (Anselin, 1989). This means
that a model trained on this dataset may fit better in some areas than others (Goodchild
and Li, 2021). Semantic segmentation becomes more difficult for data that varies in the
temporal dimension (Digra et al., 2022). Current semantic segmentation models are not
able to generalize well on multi-temporal data. This is because the characteristics of data
vary with respect to the time of capture (Yang et al., 2022b). For example, different post-
processing methods could be used for preparing the data, or different camera technologies
could be used to capture the images from the exact geographical location.

There has been several works proposing new datasets for semantic segmentation of
landscapes. The datasets, LandCover.ai, DeepGlobe, and Agriculture-Vision, which are
summarized in Table 1 are most similar to HAIR given that they all contain images of
natural landscapes with high resolution. Long et al. (2020) give an overview of many
datasets. LandCover.ai is a semantic segmentation dataset of aerial images from areas
across Poland with resolutions between 25 to 50 cm per pixel and contains five classes.
Agriculture-Vision (Chiu et al., 2020) is an aerial image dataset for pattern analysis of
agricultural lands in the US with nine classes and 10 cm per pixel resolution. In a later
study, this dataset is extended and improved. While the original version is limited to small
images of 512× 512 pixels, the updated version includes 3600 large, high-resolution images
(Wu et al., 2023). DeepGlobe is a Satellite Image Understanding Challenge with the three
challenges: road extraction, building detection and land cover classification. DeepGlobe has
high resolution images of 50 cm per pixel from India, Indonesia and Thailand and has six
classes. Like DeepGlobe, satellite images (e.g., Landsat, Sentinel-1, Sentinel-2) were used to
create many datasets in remote sensing (Wu et al., 2023). Two notable examples are Biome
(Foga et al., 2017), designed for cloud detection, and Inria, which is a semantic segmentation
dataset of urban settlements with two classes of building and not building. Ratajczak et al.
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River Year Total ID OOD

Gaula 1947 1.15 0.14 -

Gaula 1963 3.60 0.43 -

Gaula 1998 0.29 - 0.29

Surna 1963 0.48 0.10 -

Lærdal 1976 2.35 0.24 -

Orkla 1962 0.51 - 0.51

Nea 1962 0.34 0.03 -

Total - 8.72 0.94 0.80

Figure 3: Diagrams: the distribution of classes in the dataset (left) and the OOD test set.
Table: overview of the number of pixels taken from the different rivers (Rivers)
in the different years (Year) and how many of these are in the ID and OOD test
sets (in billion).

(2019) introduce a historical aerial image dataset of grayscale images. However, similar to
the EuroSAT dataset (Helber et al., 2019), the problem is formulated as a classification task
where smaller image patches are classified. However, the low resolution limits the usefulness
of the data for studying land use evolution (Carbonneau and Piégay, 2012; Fausch et al.,
2002). Other studies focus on semantic segmentation of land cover images captured by
unmanned aerial vehicles (UAVs). For example, Wang and Mahmoudian (2023) present a
UAV dataset of aerial fluvial images with multiple camera perspectives. Images are from
the fall of 2017 and are labeled into river, boat, bridge, sky, forest vegetation, dry sediment,
drone, and fluvial classes.

HAIR has some key differences from other datasets. First, unlike most datasets that
consist of recent aerial and satellite images with at least three channels (RGB), HAIR
images are exclusively grayscale, as this is the nature of historical aerial images. Figure 7
in the appendix provides a visual comparison of HAIR aerial images and Sentinel-1 SAR
images. As it can be seen from the figure, these SAR images have low resolution which
make them undesirable for studying the evolution of the rivers. Additionally, Sentinel-1
images are only available after 2014 and cannot be used to study the historical state of the
landscape. Having high resolution images are important for many important applications,
such as understanding of river habitat Carbonneau et al. (2020) and their evolution through
time Piégay et al. (2020), ice morphology Alfredsen et al. (2018) and fish ecology Vannote
et al. (1980), Second, to the best of our knowledge, HAIR is the only dataset with gravel
class. This class is critical in analyzing the evolution of riverscapes and their ecosystems
(Barlaup et al., 2008; Hauer et al., 2016). Finally, the annotations in HAIR are finer than
previous works, and these detailed annotations are made by experts. As shown in Table 1,
the size of HAIR exceeds that of many widely recognized datasets in the field.
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Figure 4: Intensity distribution of images covering the same section of Gaula from 1963
(left) and 1998 (right). It is calculated as the number of pixels with a given color
(256 gray levels).

4 HAIR

HAIR is comprised of 8.72 billion pixels spread over 178 annotated images from the five
rivers Nea, Orkla, Surna, Gaula and Lærdal in Norway. The images come in one of three
different sizes (8000×6000, 6400×4800 or 16000×12000 pixels), with a resolution of 20 cm
per pixel. High quality annotations are made by experts, which limits the number of images
that can be annotated; quality annotations take long time to make and they are made by
experts that is a limited resource. This effort is inspired by the data-centric movement4 in
which found that improved annotation quality could improve performance more than model
optimization.

Figure 3 provides an overview of the dataset. The dataset contains images from 1947,
1962, 1963, 1978 and 1998 and therefore, all of them are panchromatic (grayscale) since
aerial images before the 2000 were captured in grayscale (Gergel and Turner, 2017). These
images are selected so that we have both spatial and temporal overlap in the dataset.
The AS,T set of HAIR contains images of riverscapes AGaula,1947, AGaula,1963, ASurna,1963,
ASurna,1963, ANea,1962, ALærdal,1976.

The test sets have been designed to enable evaluation of whether both spatial and
temporal characteristics are learned and can be generalized. Approximately 10% of images
of each of the riverscapes in AS,T were chosen randomly for the ID test set. The remainder
is split into a training set (80%) and a validation set (20%). The OOD test set, OS,T ,
consists of two different rivers, namely Gaula and Orkla. The OOD images of river Gaula
are captured in 1998, which is a different time period than those found in the training set
and translates to 51 years of camera improvement compared to the images from 1947 found
in the training set. The OOD pictures of Orkla are captured in 1962, which are close in
time to the Nea 1962, Surna 1963 and Gaula 1963. However, the Orkla images cover a
completely different spatial area. This means that, OS,T = { OOrkla,1962, OGaula,1998}. Out
of the 178 large images in HAIR, 20 are in the ID test set and nine in the OOD test set.

4. Workshop on Data-centric AI at NeurIPS 2021: https://datacentricai.org
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Data Acquisition: HAIR consists of images from historical aerial photos used to
develop the digital orthophoto covering the whole of Norway. The images can be accessed
through a database of aerial imagery of the mainland of Norway (www.norgeibilder.no)
covering both recent and historic photos that is maintained by the Norwegian mapping
authority. The earliest images are from 1937 and the most recent are from 2023. A large
backlog of historic aerial photos of the whole of Norway are being digitized and will be
shared in the database continuously after being completed. All images are georeferenced in
the database. The images in HAIR are projected into EUREF89-UTM33N.

The aerial photos are taken at different times in the summer, which means that vegeta-
tion differs quite a lot. The dataset includes a wide variety of optical conditions including
different shadow lengths, angels of sunlight and saturation.

Annotation: Traditionally, the most common annotation tools for this purpose is GIS
software with polygon editing, such as QGIS (QGIS Development Team, 2009). However,
polygon editing lacks the precision required for the high quality labels. For HAIR, anno-
tations were made manually by the experts using Adobe Photoshop on iPads using pens,
as this enables detailed annotations. Each large image of mainly 8000 × 6000 pixels was
loaded as a layer to Adobe Photoshop. Annotations were done on top of the source image
in a layer of its own. A specific color were assigned to each class, and the domain experts
colored the six classes using the corresponding colors. Adobe Photoshop provided many
tools that help facilitate the annotation. Magic Wand was, for example, used as a selection
tool for most of the roads, and the Marching Ants algorithm (Viseras et al., 2016) was used
to modify the edges of objects.

The experts followed a common procedure. Areas that were considered ambiguous by
individual experts were discussed by the group to reduce the noise in the annotation. The
annotation has been taken very seriously and is considered to be of high quality, although
ambiguous examples can without doubt be found in such a large dataset. Figure 1 illustrates
three out of the many different cases that were discussed by the experts.

Classes: We annotated the images with six different classes that can help understand
the human pressure on river biodiversity and hydromorphology. These six classes are chosen
pragmatically based on ease of manual annotation versus value of analyzing their change
over time. More classes could have been added with high value, but these classes would have
been even smaller than the gravel class with an even higher potential for misclassification.

• Water (W): Water covered areas.

• Gravel (G): Vegetation free gravel bars in the river.

• Farmland (F): Farmland and cultivated land.

• Vegetation (V): Forest and other vegetated areas.

• Anthropogenic (A): Human-built structures.

• Unknown (U): Areas with no aerial images.

Statistics for HAIR: The distribution of different classes in HAIR is shown in Figure
3 and indicates an imbalanced dataset where the two classes gravel and anthropogenic are
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underrepresented. The most common classes, vegetation and forest, cover 69.8% of the
images. Gravel, which is the most important class besides water for an analysis of the
impact of human development on riverscapes, covers only 1.9% of the images while water
covers 4.6%. Figure 4 shows a comparison of the the intensity distribution of images covering
the same section of river Gaula from the years 1963 and 1998. The intensity distribution is
calculated as the number of pixels with a given pixel color, where pixel color is one out of
256 gray levels.

5 Experiments

Here, we present two experiments of which one is an investigation of how removing color
information affects the performance of a state of the art semantic segmentation model and
and the other is a benchmark of state-of-the-art semantic segmentation models on HAIR.

5.1 Materials

The segmentation of grayscale images is under-studied primarily due to the lack of large-
scale datasets. In this benchmark, we try to shed some lights into grayscale segmentation
of aerial images by testing a set of approaches to provide insights into these. One promising
approach is to employ transfer learning, where a common dataset of colored images is
converted to grayscale and used for pre-training selected models. To investigate that, we
convert the widely used DeepGlobe dataset to grayscale and employ it to pre-train the
baselines. We refer to the DeepGlobe converted to grayscale as DeepGlobe-G, and the
original DeepGlobe as DeepGlobe-RGB. We evaluate two different scenarios for all models:
1) all models are trained on HAIR only, and 2) models are first pre-trained on DeepGlobe-G
dataset and then fine-tuned on HAIR.

To convert the images of the DeepGlobe dataset into grayscale, we use the luminance
method (Kanan and Cottrell, 2012), which is widely used in computer vision (Bosch et al.,
2007) and is implemented in several image processing software and libraries such as OpenCV
(Bradski, 2000). In luminance method, the function Gluminance is defined as: Gluminance ←
0.299·R+0.587·G+0.114·B, where R, G and B represents the red, green and blue channels
of the image5. Additionally for all the trainings, to leverage the strong feature extraction
of encoders pre-trained on RGB Imagenet, we replicate the grayscale channel into the R,G,
and B channels, transforming our single-channel input into a standard three-channel image
format. ResNet50 pre-trianed on ImageNet is used as the encoder for most models, except
for HRNet and Swin-Unet that are not pre-tained.

5.2 Removing Color Information

To investigate how removing color information from aerial landscape images affect the
performance of state of the art semantic segmentation models, we trained MagNet on
DeepGlobe-G and compared its performance to MagNet trained and evaluated on the
DeepGlobe-RGB. MagNet is state-of-the-art on DeepGlobe-RGB (Huynh et al., 2021), and

5. The method is used in many papers such as (Bosch et al., 2007), however, in these works the name of
the method is not mentioned. We got the name from (Kanan and Cottrell, 2012). The coefficients are
the central component of the method.
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Figure 5: Source images (top row), labels (middle-row) and best predictions (bottom row).

we followed the exact same procedure as they used to train a MagNet model on DeepGlobe-
RGB when we trained a MagNet model on DeepGlobe-G.

Results: The resulting MIoU of MagNet trained on DeepGlobe-G was 55.92 % com-
pared to 72.96%, which is the result reported by Huynh et al. (2021) for MagnNet on
DeepGLobe-RGB. This means that removing color information from the dataset decreases
the performance of MagNet by 17.04%, which clearly shows how lack of color information
negatively affects the performance.

5.3 Two Benchmark Tasks

We select U-Net, FPN, DeepLabV3+ (Chen et al., 2018), HRNet, Magnet and Swin-Unet as
baselines to get a broad set of models for the benchmark. The selected models are evaluated
on both the ID and OOD test sets.

The optimization and image augmentation methods are selected based on (Shamsaliei
et al., 2023). The hyperparameters used for training MagNet are the same as in (Huynh
et al., 2021). For other models, we used the Hyperband algorithm (Li et al., 2018) with
a maximum of 100 epochs and 11 hybrid iteration to find the hyperparameters. Also,
validation accuracy was used as the objective. More detail of the hyperparameters for each
model is provided in the appendix. The code used to run the experiments are available in
https://zenodo.org/doi/10.5281/zenodo.10512593.
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Results: We calculate performance using MIoU of the experiments in the same way as
Huynh et al. (2021). Results are presented in Tables 3 as mean ± standard deviation of
model performance. Variation is introduced through training five seed replicates for each
model. A seed replicate is a model trained using different seeds for the pseudo-random
generator (Bouthillier et al., 2019). The performance is reported as the mean and standard
deviation of the MIoU for the set of five seed replicates. As can be seen, DeepLabV3+
achieves the best performance on both datasets. However, it does not perform considerably
better than the other models. Gravel is the class that all models struggle the most to
identify, and forest is the class for which all models achieve their highest score. For the
OOD test set, gravel is still the hardest class to predict for all models, while it is relatively
easier for the models to predict the vegetation and farmland.

Pre-training on DeepGlobe-G dataset led to a decrease in performance for all models
except HRNet and Swin-Unet. The reason for the reduced performance might be that the
DeepGlobe dataset has a relatively small scale. The small scale especially affects MagNet
as it has a comparatively more complex architecture than the other models. HRNet and
Swin-Unet on the other hand do not perform well in general, pre-training or no pre-training.
A contributing factor to their relatively lower performance could be that their backbones
were not pre-trained on any large-scale dataset, such as ImageNet. Another factor that
might cause reduced performance is the method for converting DeepGlobe to grayscale.
Kanan and Cottrell (2012) report that the conversion method affects the performance of
downstream tasks, which could easily be the case for deep learning as well as pre-processing
is known to affect reproducibility of deep learning methods (Ferrari Dacrema et al., 2021;
Gundersen et al., 2023).

All models perform substantially worse on the OOD test set compared to the ID test
set. DeepLabV3+ generalizes better than the other models, but only slightly better than
U-Net when not pre-trained. Table 3 shows how DeepLabV3+ performs on the two different
types of OOD data and that it generalizes better to data from the same time-period where
the same or a similar camera technology is used than for the images captured more than
35 years later. The better performance of DeepLabV3+ on OOD might be explained by
how Atrous Spatial Pyramid Pooling (ASPP) mechanism fuses the extracted features from
the input image. Since ASPP increases the field of view of the model, it can efficiently
access a larger context of the input image. As described in the Section 4 a variety of optical
conditions such as different angles of sunlight and length of shadows, are included in the
dataset. As mentioned by Boguszewski et al. (2021), one would expect that this would
make the dataset robust. However, the results on the OOD test data shows that it is not
the case.

Table 2 shows the variance of performance of DeepLabV3+ with respect to the year of
collection of the images in both ID and OOD test sets. The table suggests that the model
generally finds more recent images to be more challenging. We observe a substantial drop in
performance when the model is tested on the images from Lærdal, captured in 1976, despite
this river being part of the ID test set. This drop in performance could be attributed to the
temporal differences since most of the images in the training set are from the 60s. However,
images from 1947 and 1976 have approximately similar temporal differences to those in the
60s, yet we do not observe any drop in performance in the images from 1947. It could
possibly be due to the similarity between images from the 40s and 60s. When examining
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Table 2: The MIoU of the DeepLabV3+ on test sets, categorized by the year.

year river OOD
MIOU

Not pre-trained Pre-trained

1947 Gaula 89.12 ± 02.49 88.20 ± 00.74

1962
Nea 77.25 ± 00.86 73.70 ± 01.33
Orkla ✓ 69.64 ± 03.06 69.17 ± 01.58

1963
Gaula 89.12 ± 02.49 88.20 ± 00.74
Surna 78.03 ± 05.32 77.98 ± 00.23

1976 Lærdal 66.31 ± 03.81 66.47 ± 03.53

1998 Gaula ✓ 61.62 ± 03.21 59.43 ± 03.70

Table 3: The MIoU prediction of different semantic segmentation architectures on the ID
and OOD test set. MIoU is mean ± standard deviation over five seed replicates.
The Pre-trained, means the model is pre-trained on DeepGlobe-G.

Model
ID test set OOD test set

Pre-trained Not Pre-trained Pre-trained Not Pre-trained

U-Net 77.07 ± 00.48 76.10 ± 00.72 64.17 ± 00.8 60.10 ± 01.03
FPN 76.43 ± 01.84 76.06 ± 00.57 60.11 ± 01.51 59.60 ± 01.64

DeepLabV3+ 77.37 ± 01.02 76.28 ± 01.26 64.29 ± 02.66 62.68 ± 02.81
HRNet 72.52 ± 00.97 73.50 ± 00.79 53.44 ± 02.46 51.61 ± 02.63

Swin-Unet 62.21 ± 00.40 63.06 ± 01.52 42.74 ± 00.84 43.16 ± 01.82
MagNet 65.22 ± 01.39 56.32 ± 01.12 57.06 ± 03.84 41.58 ± 04.51

the images, it is evident that images from 1947 bear a closer resemblance to those from the
1960s than those from 1976. For instance, in Figure 8 in the appendix, which depicts images
from 1947, 1963, 1976, and 1998, it is noticeable that images from 1947 and 1963 share more
similarities than those between 1962 and 1976. When looking at the performance of the
pre-trained models, we observe that there is a larger variance when models are applied to
more recent images. Table 5 in the appendix presents the variability in model performance
across all benchmark models relative to the years of river data.

Table 4: Comparison of complexity of semantic segmentation models when applied to
HAIR.

Metric U-Net FPN DeepLabV3+ HRNet Swin-Unet
MagNet

Back-bone Refiner

Trainable parameters (m) 32.51 26.86 11.82 9.51 28.08 28.06 0.09
Training Time (s/step) 0.68 1.15 1.21 0.95 1.19 0.72 0.615

Inference Time (s/image) 11.77 13.64 10.34 13.63 14.95 15.04
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Figure 6: Comparison of predictions for Gaula 1998 (left) and 1963 (right).

To evaluate the complexity of the models, we compared three metrics: number of train-
able parameters, training time for each step, and inference time of one 6000 × 8000 pixels
image. This evaluation methodology is similar to the approach used in (Yi et al., 2019).
Table 4 shows these metrics for all the models used for the two benchmark tasks.

Models with fewer trainable parameters are typically smaller in size, and we observe that
HRNet and DeepLabV3+ have fewer trainable parameters compared to the other models.
However, it is important to mention that the number of parameters is not the only factor
in GPU memory consumption. For example, while HRNet has comparably fewer trainable
parameters than DeepLabV3+, it requires more GPU memory to train. HRNet keeps the
high-resolution representations of the input throughout the feed-forward process. It starts
with high resolution and gradually adds lower resolutions, connecting the multi-resolution
streams in parallel. This design choice leads to higher consumption of GPU memory. On
the other hand, DeepLabV3+ incorporates dilated convolutions and reduces the spatial
resolution of the input at an early stage, requiring less GPU memory.

To compare the training time, since each model has different batch sizes, which affect
the number of steps of each epoch, we compared the time it takes for one step in the model.
To compare the inference time, we selected five images from the test set with the size of
6000 × 8000 pixels and calculated the average inference time for these images. All the
experiments are conducted on the same type of hardware and software. We observe that,
comparably, U-Net requires less time to train, which is consistent with the simple design of
the architecture. However, DeepLabV3+ has a slightly faster inference time compared to
other models. This can be due to having fewer parameters and employing Atrous Separable
Convolutions, which reduce the computational cost. On the flip side, MagNet has two phases
on the inference and applies two separate networks to one image, making the inference more
time-consuming. In practice, we train the model once and utilize it for inference several
times, which makes inference time a more important factor.

In addition to the models described so far, we fine-tuned the Segment Anything Model
(SAM) (Kirillov et al., 2023). SAM is a promotable semantic segmentation model based
on Transformer vision models (Dosovitskiy et al., 2020). SAM has been trained on a large
dataset and has demonstrated impressive performance in zero-shot tasks. The fine-tuning
is described in Section A.5 of the appendix. Our findings indicate that further research
is needed to enhance SAM’s performance on the HAIR dataset. Despite the balanced
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performance on ID and OOD test sets, the fine-tuned SAM model did not yield satisfactory
results in either of the test sets. Interestingly, the model performed slightly better on the
OOD test set than the ID test set. This indicates that additional studies on fine-tuning
large pre-trained models like SAM could result in models exhibiting enhanced generalization
performance when utilized on the HAIR dataset.

6 The Four Challenges

Here we present a short discussion of how the four characteristics of historical aerial images
can affect the results.

Characteristic #1 - Camera technology: The results on the OOD test set indicate
that camera technology is an issue. The performance of the models drop considerably for
the images of Gaula 1998 compared to Orkla 1962. The Gaula 1998 were captured 35 years
after the Orkla 1962 images. However, DeepLabV3+ performs much better when tested on
the ID images of Gaula from 1963, as can be seen in Table 2. This indicates that it is not
river Gaula itself that is challenging, but that it is the development of camera technology
that is the cause of the performance drop. While intensity differs between the river in the
ID test set compared to the older images in the OOD dataset, as seen in Figures 4 and
6, light intensity alone should not be a problem as contrast and brightness were changed
randomly as part of the training, as described in Appendix A. More research on data
augmentation methods designed specifically for grayscale aerial images might alleviate this
issue. Examples include modification of brightness and contrast during the training (Sakkos
et al., 2019; Yang et al., 2022a), blurring filters, histogram transformations, special optical
and lens distortion (Liu et al., 2018), and generative models (Shorten and Khoshgoftaar,
2019).

Characteristic #2 - Lighting conditions: Light conditions make the prediction
more challenging. In Figure 5, the reflections in the shimmery section represent an unusual
visual effect on the water. Because this effect happens only when the light from the sun
hits the water and is reflected in the camera, there are relatively few examples of such
effects in the training data and little data for the model to learn the pattern. Challenge
#1 covers this by suggesting that more research on online augmentations and generative
models, designed specifically for historical grayscale aerial images, could mitigate this issue.

Characteristic #3 - Class imbalance: Figure 3 shows the imbalanced class dis-
tribution, and the results presented in Table 3 indicate that the models have the worst
performance on smallest classes. The class distribution clearly poses a problem. More
research on effective methods to mitigate the class imbalance of high resolution aerial im-
ages, such as more efficient sampling methods (Tavera et al., 2022) and more effective loss
functions (Dong et al., 2019) could help overcoming this challenge.

Characteristic #4 - Grayscale: Texture and context become the main sources of
information for grayscale images. Land covers that are easily distinguishable when having
color information become hard to distinguish in grayscale. Figure 5 shows several cases
where texture alone makes the prediction hard. The MIoU of MagNet on DeepGlobe-G
was 55.92 % which is 17.04% less than the performance reported in (Huynh et al., 2021)
for DeepGlobe-RGB. The deep learning segmentation methods typically divide the larger
images into smaller patches and run these through the deep nets. Context is the underlying
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issue when the method miss-classifies two patches that clearly are of the same class. These
errors happen when there are examples of patches in the test set that have similar texture
but different class than patches in the training data. It is easy to imagine that color
information would help solve these cases. Further development is needed to better support
grayscale landscape images.

7 Future Work and Conclusions

Historical grayscale aerial images are a potentially important data source. However, they
have not received much attention. These images have the capacity to offer valuable insight
into the evolution of the landscape over the past century, shedding light on the role of
human development in these transformations. However, current state-of-the-art semantic
segmentation models used to access this information do not produce satisfactory results
because they are not tailored for this type of data.

We show that the current satellite dataset containing RGB images is not suitable for
training segmentation models aimed at analyzing historical aerial images. This finding
shows the value of having an annotated dataset containing the actual historical aerial im-
ages. Additionally, we present HAIR, the first dataset of high resolution historical aerial
images, annotated by domain experts. HAIR contains 8.72 billion annotated pixels and
covers the years between 1947 and 1998. As the source aerial images are collected by the
Norwegian Mapping Authority, our dataset is currently limited to Norwegian rivers. But
our dataset encompasses a diverse range of rivers within Norway covering a variety of river
characteristics, such as different sizes, morphological features, and riparian landscapes. We
show that the performance of semantic segmentation models drops when applied to grayscale
images compared to the same images in RGB. Furthermore, we provide a baseline for fu-
ture studies by benchmarking the HAIR on selected state-of-the-art semantic segmentation
models. The experiments show that pre-training on a recent dataset of converted satellite
images does not improve the performance of the models, which further highlights the impor-
tance of generating large scale datasets of historical aerial images. Finally, we evaluated the
impact of the four challenges associated with historical aerial images on the performance of
the models and discussed how they can be mitigated in future studies.

Broader Impact Statement

Automatic semantic segmentation of historical aerial images of the landscape is a bottleneck
in studying the changes in the landscape over time. This study is vital for understanding the
impact of human development on the environment, finding potential restoration policies for
landscapes and protecting biodiversity. However, semantic segmentation of historical aerial
images is not well-studied due to the lack of a labeled dataset. In this work, we illustrate
the shortcoming of current state-of-the-art semantic segmentation methods when applied
to historical grayscale aerial images. To address this shortcoming, we present HAIR, the
first dataset of historical aerial images of landscapes covering different regions across several
decades. This dataset enables research on semantic segmentation of historical aerial images,
which is key to analyzing landscape evolution over time.
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Carbonneau, Simon Dufour, Frédéric Liébault, Virginia Ruiz-Villanueva, and Louise
Slater. Remotely sensed rivers in the anthropocene: State of the art and prospects.
Earth Surface Processes and Landforms, 45(1):157–188, 2020.

Priyanka, Sravya N, Shyam Lal, J Nalini, Chintala Sudhakar Reddy, and Fabio Dell’Acqua.
DIResUNet: Architecture for multiclass semantic segmentation of high resolution remote
sensing imagery data. Applied Intelligence, March 2022. doi: 10.1007/s10489-022-03310-z.
URL https://doi.org/10.1007/s10489-022-03310-z.

QGIS Development Team. QGIS Geographic Information System. Open Source Geospatial
Foundation, 2009. URL http://qgis.osgeo.org.

Alexander Rakhlin, Alex Davydow, and Sergey Nikolenko. Land cover classification from
satellite imagery with u-net and lovász-softmax loss. In Proceedings of the IEEE Confer-
ence on Computer Vision and Pattern Recognition Workshops, pages 262–266, 2018.
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Appendix A.

A.1 Runtime Environment

GPU: NVIDIA Tesla V100

CPU: Intel(R) Xeon-Gold 6240

Number of Cores: 18 cores @ 2.6 Ghz

RAM: 32 GiB

Models were implemented using Tensorflow (Abadi et al., 2015) and Pytorch (Paszke et al.,
2019) packages. In addition, Albumentations library (Buslaev et al., 2020) was used for
Online Augmentation, and SegmentModel (Yakubovskiy, 2019) library was used in some of
the implementations. In order to train the MagNet (Huynh et al., 2021), the script provided
by the paper’s github page was used.

A.2 Hyperparameters of benchmark models

The batch size for the models is 16, except for HRNet, Swin-Unet and backbone of Mag-
Net, which is 12, and MagNet refinement module, which is 8. Models were trained using
a weighted categorical cross entropy loss function to mitigate the class imbalance of the
dataset. For training the MagNet, stochastic gradient decent (SGD) is used for with a
weight decay of 0.9, For the other architectures the Adam optimizer (Kingma and Ba,
2015) is used.

The ReduceLROnPlateau algorithm was applied in Adam to reduce the learning rate
by a factor of 0.5 if value loss did not decrease for more than 5 epochs. Except for MagNet,
L2 regularization is used for convolutional layers. The FPN backbone of the MagNet is pre-
trained on DeepGlobe dataset and the output layer is changed to have 6 outputs instead
of 7. MagNet is trained for 484 epochs while the other architectures are trained until
convergence .

Gradient clipping with clipping value of 0.5 is applied for training the Swin-Unet. During
training, images were randomly flipped and transposed, and their contrast and brightness
were randomly transformed with the changing factor set to 0.1, and the probability of
applying the changes was set to 20%. For training the MagNet, images were sampled as
2448× 2448 px patches, and the rest are sampled as 512× 512 px patches. To sample the
patches, each large image is first divided into smaller patches with no overlap. Afterwards,
we perform a rotate and sample augmentation (RSA) method, where images were flipped
and patches with center pixel of gravel and water were added to the training set. The input
size of MagNet used is the same as in the original paper for DeepGlobe. For the rest of
the models, 512 × 512 is used as the input size. For inference, large images were divided
into patches with the same size used to train the corresponding model, and each of these
patches was used for inference. Due to low GPU memory, we did not used object-contextual
representation for HRNet (Yuan et al., 2019).
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Figure 7: A visual comparison of HAIR images of Gaula captured in 1963 (top left) and
SAT image of Gaula captured by Sentinel-1 in 2015 (top right). A subsection of
HAIR images of Gaula 1963 is magnified to illustrate the high resolution of the
HAIR images.

A.3 Visualization of the Synthetic Aperture Radar (SAR) images

As illustrated in the Figure 7, the resolution of the SAR images from Sentinel-1 are com-
parably lower than the aerial images in the HAIR dataset. Additionally, Sentinel-1 started
the mission in 2014, so evolution of the landscape during previous years is not captured.

A.4 Variation of segmentation quality over time

Table 5 states the variance in the performance of semantic segmentation models in the
benchmark with respect to the year of the rivers in the test sets.

A.5 Fine-tuning Segment Anything

Recently, there has been a large focus on developing foundation models in computer vision.
Foundation models can adapt to tasks and data distributions that extend beyond their initial
training data (Bommasani et al., 2021). In this work, we select the Segment Anything
Model (SAM) as a foundation model and fine-tune and evaluate its performance on the
HAIR dataset. This model has three components:
Image encoder: Encodes the input image into image embeddings.
Prompt encoder: Encodes additional prompts such as points, boxes, text, and input masks.
Mask decoder: Decodes the encoded image embeddings and prompts embeddings to create
the desired output masks.
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Table 5: The MIoU score of all of the models with respect to the year of capturing the
images in both ID and OOD test sets. The MIoU is provided as the average plus
minus the standard deviation for each model.

model pre-trained
Year and river

1947 1962 1963 1976 1998
Gaula Nea Orkla Gaula Surna Lærdal Gaula

U-Net
88.34 ± 0.40 76.39 ± 1.25 69.35 ± 2.85 88.34 ± 0.40 80.66 ± 0.68 67.74 ± 1.40 61.58 ± 1.07

✓ 86.46 ± 1.56 73.53 ± 1.29 68.21 ± 1.85 86.46 ± 1.56 80.46 ± 1.16 66.37 ± 1.83 56.04 ± 1.49

FPN
85.92 ± 3.03 74.87 ± 1.96 64.60 ± 4.14 85.92 ± 3.03 78.55 ± 2.74 66.12 ± 2.96 57.87 ± 3.20

✓ 87.31 ± 0.67 74.00 ± 2.15 68.84 ± 0.63 87.31 ± 0.67 79.48 ± 0.57 66.83 ± 1.50 54.98 ± 2.98

DeepLabV3+
89.12 ± 2.49 77.25 ± 0.86 69.64 ± 3.06 89.12 ± 2.49 78.03 ± 5.32 66.31 ± 3.81 61.62 ± 3.21

✓ 88.20 ± 0.74 73.70 ± 1.33 69.17 ± 1.58 88.20 ± 0.74 77.98 ± 0.23 66.47 ± 3.53 59.43 ± 3.70

HRNet
83.08 ± 2.82 73.52 ± 1.58 58.02 ± 3.04 83.08 ± 2.82 77.78 ± 1.13 60.08 ± 1.25 51.31 ± 3.05

✓ 86.74 ± 0.93 74.74 ± 2.33 53.55 ± 3.70 86.74 ± 0.93 76.91 ± 1.62 62.13 ± 1.38 50.65 ± 2.74

Swin-Unet
67.19 ± 1.64 61.71 ± 1.13 44.06 ± 1.89 67.19 ± 1.64 67.90 ± 1.85 50.72 ± 0.62 42.08 ± 1.52

✓ 67.59 ± 1.69 62.60 ± 2.04 44.99 ± 1.71 67.59 ± 1.69 69.44 ± 2.41 51.34 ± 2.39 42.25 ± 2.33

MagNet
64.32 ± 2.12 73.54 ± 1.28 66.40 ± 4.71 64.32 ± 2.12 62.41 ± 9.69 45.34 ± 1.30 52.38 ± 4.85

✓ 54.16 ± 3.86 62.76 ± 2.69 51.07 ± 4.44 54.16 ± 3.86 43.52 ± 5.47 36.86 ± 3.81 36.83 ± 5.09

Figure 8: The images of rivers captured in 1947, 1963, 1976, and 1998 (from left to right).
We observe that images from 1947 and 1963 are more similar than 1976 and 1963.
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Table 6: The MIoU of the Fine-Tuned SAM on test sets.

Model
Test sets
ID OOD

SAM 52.24 54.57

Table 7: The MIoU of the Fine-Tuned SAM on test sets categorized by year.

model
Year and river

1947 1962 1963 1976 1998
Gaula Nea Orkla Gaula Surna Lærdal Gaula

SAM 44.30 54.40 57.64 44.30 52.64 38.23 53.04

To fine-tune SAM on the HAIR dataset, we initialize the SAM ViT-L model with the pre-
trained weights. Then, we add a convolutional layer as the segmentation head to transform
the output of SAM into the desired shape of the HAIR dataset. The segmentation head
consists of a convolutional layer followed by upsampling. First, all the components are
frozen except the segmentation head. We train the segmentation head during the first
ten epochs. Afterward, we unfreeze the parameters of the mask decoder component and
continue the training until convergence. This learning approach is similar to that used in
(Fortes Rey et al., 2023). We used similar Hyperparameters as used in (Huynh et al., 2021).
Figure 9 shows the process of fine-tuning SAM for the HAIR dataset.

Table 6 shows the performance of SAM for both ID and OOD test sets. Additionally,
Table 7 states the performance of SAM on the test sets categorized by the year. The results
imply that further research and optimization are required to enhance the performance of
fine-tuning foundation models such as SAM on the HAIR dataset. Notably, the average time
taken for each step during the fine-tuning of SAM is 2.77 seconds, which is comparatively
longer than the other models in the benchmark. Table 8 shows the model complexity of
SAM. We observe that the inference time of SAM is considerably higher than other models
in the benchmark, which is consistent with the model’s size.

Table 8: Comparison of complexity of semantic segmentation models when applied to
HAIR.

Metric Fine-Tuned SAM

Trainable parameters (m) 405.85
Training Time (s/step) 2.77

Inference Time (s/image) 51.81
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Figure 9: The process of fine-tuning SAM (Kirillov et al., 2023) for HAIR dataset. For
the first ten epochs, we only train the segmentation head (top row). Afterward,
we train the segmentation head and mask decoder together (bottom row). Com-
ponents marked in red are not being trained, while those marked in green are
undergoing training.
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